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Chapter I 

INTRODUCTION 

With the advent of efficient and large-scale mathematical program- 

ming techniques, computationally feasible methods are available for op- 

timal control problems.  The purpose of this paper is to present an 

algorithm for solving continuous-time optimal control problems with 

linear dynamics and various loss criteria.  Due to the mathematical 

programming techniques used in the algorithm, it is well suited for 

large-scale control problems, i.e., control problems with large numbers 

of state variables and time-varying control inputs.  This work consists 

of two main results that arc combined to develop the algorithm. 

In Chapter II, wo describe the types of control problems considered, 

including basic definitions and notations for these problems.  The basic 

results in contro'. theory and certain necessary conditions for optimal 

control, ns desrvibed by Pontryagln ct al. fll, are also presented. 

In Chapter III, the algorithms and basic theorems for linear pro- 

gramming and the simplex nipthod [2],   quadratic programming and the 

complementary pivot theory f3l, and the Dantzig-Wolfe generalized pro- 

gram [2] are presented. 

The iirst main result, an algorithm for solving parametric linear 

and quadratic programming problems, when the objective function is non- 

linear in the parameter, is presenter! in Chapter IV.  Also presented is 

the class of nonlinear functions for which this algorithm is valid.  The 

finitoness of the algorithm, including avoidance oi cycling clue to de- 

generacy, is then proven.  The characteristics of the optimal solution 

as a function of the parameter arc also described. 

The second result, an extension of Dantzig's f-'l formulation of 

optimal control problems as generalized programs, is presented in Chap- 

ter V. It is shown that any optimal control problem with the following 

characteristics may be formulated as a generalized program: (1) the 

system must initiate from some point in a specified region of the slate 

space; (2) the state al the fixed terminal time can be chosen from an- 

other convex region in the stale space (fixed initial and final points 
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are Included in these definitions);  (3) the state of the system is con- 

trolled by linear differential equations;  (4) the admissible control 

region is a convex polyhedral set (for each point in time) in the con- 

trol space;  (5) the loss criteria is a linear functional in the state 

and control and/or a quadratic functional in control and/or the absolute 

value of the control inputs (minimum fuel), or the minimum time.  It is 

further shown that these continuous-time optimal control problems have 

an equivalent generalized programming formulation in which the master 

problem     linear program o,'    or three plus  the di...... :,:.  f the 

state space.  The subproblem to the master program is a parametric pro- 

gramming problem of the control space dimension and is solvable by the 

methods presented in Chapter IV.  This subproblem yields an extreme ad- 

mlssable control that, when used with previously found extreme admis- 

sable controls, gives a solution that is closer to a feasible or an 

optimal one. 

The algorithm and its variants \re presented in the second part of 

Chapter V.  A flow chart of the algorithm is given, along with a descrip- 

tion of each execution.  Also included is an initiating phase that ter- 

minates in a feasible solution of the control problem.  On completion of 

the initiating phase, the algorithm maintains a feasible control while 

obtaining new controls; these new controls yield better objective values 

without disturbing the feasibility.  I'pper and lower bounds on the op- 

timal objective value are provided at each stage of the algorithm. 

In Chapter VI, the characteristics of the optimal controls, without 

any additional assumptions on the system or on the uniqueness of t lie 

solution, arc presented.  Also included are the relationships between 

the necessary conditions of Pontryagin and the generalized programming 

results.  Between these optimization conditions, a link exists in the 

dual variables of the generalized program and the adjoint variables 

associated with the optimal control problem. 

To clarify the algorithm and indicate its computational feasibility, 

a minimum fuel problem and a minimum time problem aro   solved in detail 

In Chapter VII.  The convergence properties and solution procedures are 

Illustrated with data obtained from eomputer runs. 

! 
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Chapter   II 

OPTIMAL CONTROL 

This section defines an optimal control problem and Pontryagin's 

necessary conditions for oritimality. The emphasis is on those linear 

systems for which generalised programming equivalents can be  formulated. 

A.       Definition  of  Dynamic Control   Systems 

The  basic  control  problem can  be  described by the  differential 

equations: 

dx. 
x.   = -r— =   f  (x  ,   . . . ,   x   ,   u   ,   ...,   u  ,   t) 

i        dt i    1 n       1 m 

1,   2    n 
(2.1) 

where 

x(l)   = 

x  (t) 

x   (t) 
L    n 

(2.2) 

is the vector of stale variables or phase coordinates which describe the 

trajectory of the systetr in Euclidean space through lime.  The control 

function is the vector of control inputs 

u(t) - 

u (1)' 

u (t) 
L  111 

(2.3) 

which influence the state through the differentia] equations.  The sys- 

tem at some initial time,  t ,  satisfies the initial conditions, 
o 

.ii »■■J»>L-~—la 
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x(t ) e S c E . 
o    o 

(2.4) 

I 
I   i 

Thus the systom may have an initial point x(t )  at any one of the points 
o 

in the set,  .'3 .  At a terminal time,  T,  the system is required to lie 

in nome region, i.e.. 

x(T) e S C E 
T 

(2.5) 

The time T may be free or fixed, and the sets,  S  and  S ,  may be 

fixed points. 

B.   Admissible and Feasible Controls and Reachable Sets 

The vector control function,  u(t)  must be specified at every t 

and is required to lie in an admissible control region,  U ,  where 

u(t) e U c E . Vt (2.6) 

Definition 2. 1.  An admissible control is any vector function,  u(t), 

for which 

u(t) t U C E  , tft t [O.T] , 

whore  [0,11  denotes the time interval (t|0 < t < T] 

The objective of the control problem is to find an admissible con- 

function that transfers the stat 

other point at T,  while minimizing 

trol function that transfers the state from some point at  t  to an- 
o 

T 

/  f (xi A   0 1 x , u u , t) dt 
n   1       m 

(2.7) 
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It Is convenient at this point to define another variable » 

<o(t; = / '^ •' Xn' Ul u
m' *) dt (2.8) 

and to let 

x(t) = 

x (t) 
o 

Lx(t) 
(2,9) 

Thus, 

Xo = f
0(
x.u.t) -  Xo(to) = 0 , and J = x (T) 

o (2.10) 

^iinition^.  The reacha^e set. denoted by ^      ^.^  of a set 

of terminal  .x(T) of admissible solutions to the control probl 

without the condition  x(T) a   S„. 
problem, 

R  = (x t £n|x = X(T) , 

where x(T)  is a solution to (2.1) at  t = T with 

x(t ) . S  ,  u(t) t U  ,  Vt) . 
o    o t 

Note that for the fixed final time,  T,  if 

there is no admissible control to transfe 

T 
point in  S  to a point in  S . 

o 

r the system from an initial 

vmmmfUtomumt* i vuitnim 
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Definition 2.3.  A control function, u(t),     defined for  t t [t ,T]  is 
  o 

a feasible control for the optimal control problem if it is an ad- 

missible control and transfers the system from some state x(t ) e S 
o   o 

to  a   state    x(T)   e   S      while    x(t)     satisfies  (2.1).      Note  that   a 

feasible control exists  iff 

sT n RT ^ 0 . 

In   the  optimal   control   problem,   we  are   searching   for  a   control 

function,   among all   feasible  controls,   that   results   in  a   minimal   value 

of     J. 

Assumption 2. 1.     We will now restrict our attention to  functions     f   , 

for     i   =  0,    ...,   n,   which   ;ire  autonomous,   i.e.,   they  do   not  depend 

explicitly  on   time.     We will  also  assume  that  the     f.      functions   for 

i   =0,   1 n,     are  continuous   in  both    x    and     u     and  are   con- 

tinuously  differentiable with  respect   to    x. 

C.       The Adjoint  System  and  the   Hamiltonian 

For  any given     u    or    x(o),      let     x =  x(t)     be  determined  by 

x .   =  f.(x,u) i   = 0,    1,   . ..,   n 
i i 

For this choise of  u,  x(o),  and the resulting x(t),  we define the 

adjoint system,  ¥_, f  f ,  by 
u  1       n 

dT. 
i 

"cTT y 
k=0 

of, (x,u) 
k 

0, 1 n , (2.11) 

where the partials are evaluated at the above x(t), u(t).  The solution 

to (2.11) is related to the choice of control,  u(t). 
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The   Hamiltonian   is  defined  as 

H(t,x,u)   =  ffCx, u) 

where    y'      is   the   transpose  of 

•i' = 

and 

f(x,u) 

f   (x.u) 
o 

f   (x.u) 

f   (x,u) 
n 

Thus   (2.1)    and   (2.11)   become 

•I! 
(2.la) 

(2.11a) 

D.        Pontryagin's Conditions   for Opt i ma 1i t y 

When   the   initial   and   final   points,      N(t   )     and     x(T),      arc   not 
o 

fixed,   the   regions     S       and     S„,    are  assumed   to   be   smooth   manifolds  or 
0 o 1 

convex sets.  A necessary condition for optimality in tins case is that 

the solution to (2.1) and (2.11) satisfy n transversa11ty condition. 
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Let     x(t  )   e   S      and    x(T)   e   Sm     be  given  points  on   the  boundary of    S 
o o T o 

and     S  ;     and let    D      and    D       be  tangent planes  of    S      and    S      at 

these  points.     Then  the   solution  satisfying   (2.1)   and   (2.11)   will  also 

satisfy  the  transversality  condition,   if    t(t   )     and    Y(T)     are   the 

directions  of  the  supporting  hyperplanes,     D       and     D   .      of    S       and 
o T o 

S       at     x(t   )     and    x(T),      respectively. 

Necessary Conditions  for    t    <  t < T.      Let    u(t)     be a  feas- 

ible  control with  a corresponding  trajectory    x(t).      For    u(t)   = u*(t) 

to yield an  optimal  solution   to  the control problem,    it   is necessary   to 

have  a  non-zero continuous   vector   function    f(t)     corresponding   to    x(t) 

and     u*(t))      (2.1)   and   (2.11),   and  satisfying   the   transversality condi- 

tions  so  that 

(1)     For     t   t   [t   ,T], 

H[x(t)>   u*(t),   T(t)l   =     ^l'P„       H[x(t),   u(t),   ?(t)] 
u (t) t U 

and 

(2)     ^   (T)   <  0 
o - 

The Linear System and Control Constraints 

A linear system is defined as a dynamic system in which the 

w • V V . , u )  are linear in  x  and  u  for  i - 1, 
in 

n.  Note that  f (x,u)  need not be linear.  This linear system can be 
o 

described by two matrices,  F and G,  as 

x(t) = Fx(t) + Gu(t) ,     x(t) t En ,  u(t) t K"' ,     (2.12) 

where  F is an n y n  real matrix and G  is an  n '■'  m real matrix. 
F(t-i) 

The   linear   system has   a   fundainental   matrix   Ml     o 

the   property  of   transforming     x(t)     by : 

thai   has 
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F(t   -t   ) 
^t^   =  e       '     0    x(t0) 

when     u(t)   =  0     for     I   c   [t   ,1   ],      This   fundamental   matrix  arises   from 

the  solution  of  the  differential   equations   in   (2.12)   when     u(t)   = 0. 

The  solution   for  any   function     u(t)      is 

F(trtn) 
xitj   = e       1     0    x(t 

t F(t   -T) 

0)   +    / e GU(T)    dT (2.13) 

When     u(t)   t   V       for all     t     and     x(t   )   i   S   ,      the   right-hand  si t Do 
. 13) determines a point in 

t .  Hence we can slate, for linear systems, 

of (2. 13) determines a point in the reachable set of  U. ,  S 
ide 

and time 

t  = <x t Kn|x = x(l ) 

F(t -t ) 
X(t ) = e   1  0  x(t 

•■ • /:' 

u(t) v r 

e       Gu( ;) di 

0 

. '  l ^ hü',i] ■  ^'o) ^ s, 

Throughout   this   paper,   wc  will   consider  problems  where 
tr) 

Uc E'",  i.e., the admissible control sc 

also assume that 
I is constant over time. We 

is a bounded convex polyhedral set, i.e., it is 

bounded by hyperplanes in m-dimensiona 1 space. Note that an 

polyhedral set can be expressed by 
y  convex 

u  =  ; u   ,    E '   | Au <   b1 

for  some   real   fixed  matrix  A  of  dimension 

vector     b     of  dimension 
q  '■'  m    and   for   some   real 
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In the following, we will permit the initial and terminal sets,  S 

and  S C E ,  to be convex sets. 

Note that  f.(x,u) = f'x + g'u,  where  f   is an n-dimensional 
11 l tl 

vector and g       is an m-dimensional vector.  f .  and er  are the i 
i 11 

rows of the F and G  matrices, respectively. 

F.   Loss Functionals 

In this section, we will describe the different classes of loss 

functionals.  These loss functionals, when combined with linear systems 

and the above restrictions, can be solved by mathematical programming 

techniques that are developed and discussed in the next two chapters. 

Case 1.  Linear Loss Functionals. 

We define the linear loss case as one that includes nil loss func- 

tionals of the form 

f (x,u) = f'x + g'u 
o        o    o 

where  f  and g  are any real  n and m component vectors, respec- 
o       o 

tively.  Thus, we can define linear systems with linear loss functionals 

as complet' ly linear systems. 

Case 2.  Minimum Fuel Problems. 

A certain well-known minimum fuel problem is characterized by loss 

functionals of the form 

f(u) 1 I".' 
1=1 

Case 3.  Quadratic Loss n Control. 

We consider a function a quadratic only in the control vector. 

10 
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f(u)   =  u'Qu   , 

where  Q is a positive semidefinite matrix. 

When a linear functional is added to  f(u)  and modifications of 

Cases 2 and 3 are permitted, the three cases are: 

f (x.u) = f'x + g'u + f(u) , 
O 0       0 

0 ,  Case 1 

where  f(u) = < Z| u | ,  Case 2 

u'Qu ,  Case 3 . 

(If f (x.u) = i(u),      then  f = 0,  and g  =0.) Thus the control 
o o o 

problem can be stated as 

Minimize  x (T) , 
o 

x = Fx(t) + Gu(0 + f(u) U  , 
o 

where 

—          . —1 
0     1 f 

0 

0     J 

y 

0     ! 

(2.14) 

and 

11 
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1 

0 

t   E 

x(t  )   e S    ,     x  (t   )   = 0 
o o o     o 

x(T)   e   S     ,     and 

u(t)   t  U = (u  t  E   |Au <  b]   . 

The minimum   time  pi-oblem   is  also  considered  where    T     is  not   fixed, 

S       and     S       are   fixed   points,   and     x   (T)    =  T  -   t   . 

For  linear   systems   described  by matrices     F    and    G    and  a  given 

polyhedron,   U,      Pontryagin  defines  a   "general   position  condition."     This 

condition   is   satisfied  when  the  vectors     Gw,   FGw,   ...,   F      Gw    are   lin- 

early   independent   in     E     when    w     has   the   direction of  one  of   the  edges 

of     U,     For   such   systems,   at  eacli  point   of   time,      t,      the   function 

l(t)'Gu(t)   achieves   its  maximum at  only   one  vertex  of     U,     except   on  a 

set  of  measure   zero. 

Before   pioceeding   further with   the   development   of an  algorithm  to 

solve   these   continuous-time  control   problems,   some  of   the  existing   tech- 

niques  used   in   solution   procedures  should   be  mentioned  briefly.      Three 

of  these   techniques  are  mentioned   here. 

Direct   Methods   [5].      in   these   methods,    admissible   and,    if 

possible,   feasible   controls are  chosen   to   start.      The  gradient   of   the 

cost   functional   (or,    if   the  starling  control   is  not   feasible,   a 

Lagrangian  form   that   takes   feasibility   into  account),   with  respect   to 

the   control   function,   is  determined.     Then,    by   using   gradient   or   steepest 

descent  methods,   a   new   control   function   is   chosen   to   improve   the   cost 

functional   (or   Lagrangian) . 

Indirect   Methods   [6],      Indirect   methods  primarily seek  solu- 

tions  to   the  necessary  conditions   for  optimality.      Some methods   use 

12 
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arbitrary initial  or  final  conditions   for  the  adjoint variable.      In  this 

case,   the differential  equations,   (2.1)   and   (2.11),   are  integrated   to 

find  solutions   for     x(t   );      during  this   procedure,   a  solution   to   the 
o 

necessary conditions is retained, if possible.  If x(t )  is not equal 
o 

to the original  (known)     x*(t ),     the gradient  of some cost  functional, 
o 

based on the distance from x(t )  to x*(t ),  is used to determine a 
o o 

new guess   for  the   final   time adjoint variable  values. 

Discrete  Approximations   [7,8],      Mathematical   programming   tech- 

niques,   e.g.,   linear  programming or gradient   projection methods,   are 

usually applied  to  a   discrete  approximation   of  the   continuous-time   prob- 

lem.      In  these   approximations,   the  system  is  considered  at  a  prescribed 

set  of  instants   in   the   interval     [l   ,T].     Only  at   these  times  are   the 
o 

control  inputs  allowed  to change.     The  differential  equations  are  then 

approximated   by difference  equations   for  each   time  considered.     Math- 

ematical  programming   techniques are  then  used   to  solve   the  approximation. 

Each  of  the   three   techniques  mentioned   have   their  disadvantages. 

The  direct  methods'   disadvantage   is  that   a   feasible  control  must   bo   pro- 

vided   initially.      li   not,   the  convergence  methods  cannot   be  guaranteed   to 

terminate with  a   feasible   solution.     Also,    the  efficiency  of  convergence 

is   highly dependent   on   the   initial  guess.     The   indirect methods  also  have 

a   disadvantage   in   that   they   do  not  provide  a   feasible  solution  until   the 

final   step.     At   times,    the   determination   of   a   feasible   solution   is   the 

major  problem   in   optimal   control.     The   basic   disadvantage  of  discrete 

approximations   stems   from   the  large  number  ol   variables  or  equations 

introduced   by   the   approximation  process. 

The methods developed in this work combine the features of both the 

direct and indirect methods and use admissible controls to find a fea- 

sible solution. This combination continuously reduces the cost while it 

retains the feasibility and converges on the optimum values of the ad- 

joint variables. Thus the problem, at any iteration in the optimization 

phase, has a feasible solution available, and the present solution lias a 

measure of closeness   to  the  optimum solution   [91. 
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Chapter III 

MATHEMATICAL PROGRAMMING 

In this chapter, the algorithms available for solving linear and 

quadratic programming are reviewed, and the theory of generalized pro- 

gramming is described.  The choice of the simplex method for linear 

programming problems and the complementary pivot theory for quadratic 

programming problems is dictated by t lie ease encountered in using the 

parametric programming methods presented in Chapter IV, 

It should be noted that any bounded convex polyhedral set can be 

represented (possibly after a change ol variable) by the set 

X = [x|Ax < b, x > 0]  for some real matrix,  A,  and for some real 

vector,  b. 

A.   Linear Programming 

The standard linear programming problem can be seated as 

minimize z   -■   c'x 

subject to Ax < b and 

x > 0 , 

(3.1) 

where x <_ E ,  c  is a specified n-dimensional vector,  1)  is a spoci- 

fiec1 m-dimonsional vector, and A  is a given  (m ■ n)  matrix. 

Since minimizing  c'x  is equivalent to maximizing  (-c')x,  only 

minimization problems are discussed.  Hence, problem (3.1) seeks the 

minimum of a lincai (convex and concave) function over a convex poly- 

hedral constraint set; il the islter is nonempty, a solution exists 

and is known to be at an extreme point in I he constraint set.  Tims we 

need only consider basic solutions to problem (3,1), i.e., solutions in 

which no more than  m  componeiits ol the vector x are positive and 

whose column coefficienis are linearly independent in rows where  Ax < b 

is satisfie' wit'i oqua ity. 

If) 
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The  dual   problem   to   (3.1)   can   be  expressed  by 

minimize     v  =  by 

subject   to     A'y > c (3.2) 

y > 0   ,     y  .   Em  . 

The   duality   theorem of  linear   programming can  be   summarized   in   two 

statements: 

(1) for  any  feasible     x.y     [satisfying  the  constraints of   (3,1) 

am'   (3.2)1, 

c'x  >  b'y   ,     and 

(2) for  the optimal     x*, y*     of   (3.1)   and   (3.2), 

c'x* =  b'y* 

(Ax*  -  b) 'y*  =  0 | 

(A'y*  -  cVx-» o) 
complementary slackness   conditions   . 

If  the     x     vector  is  augmented   by     m    components   to   include   slack vari- 

ables  and   the matrix    A     Is   augmented   by     I,      the  constraint   inequalities 

are  equivalent   to 

Ax   =   b 

x  >  0   , 
(3.3) 

where  A  and x  are now the augmented matrix and vector, respectively. 

Since we need only investigate the extreme points of the constraint 

set, we need only allow basic solutions corresponding to choosing  m 

linearly independent columns of A,and the components of the vector x 

corresponding to the m  columns of A.  The m columns of the augmented 

A  form a nonsingular matrix  B,  culled the basis matrix.  The corre- 

sponding components of  x  are called the basic variables.  Hence, a 
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basic feasible solution to (3.1) is one in which the values of the basic 

variables are nonnegative, and all the other variables, called the non- 

basic variables, are at value zero.  Let  x  represent the vector of th 

basic variables corresponding to  B.  Then the basic solution to the 

linear equations in (3.3) is 

xB - B  b , 

x. = 0 , 
i 

where     i     is   nonbasic.     This   is   a  basic   feasible  solution,   provided 

XB-0- 

The   Simplex  Method.      The  simplex  method   is   reviewed   in detail, 

since   a   variation  of   it  is  employed   in Chapter  IV   for   the  parametric 

programming  procedures.    This   method   is  presented   in matrix   form.     Here, 

the   linear   program 

minimize     z  =  c'x 

subject   to    Ax  =  b 

x   -■ 0 

(3.4) 

is  observed,   and   the  augmented   system  of equations 

(3.5) 

is used. 

Given any basis,  B,  let t lie augmented basis be  B,  whei 

B = 

1    -CB 

0     B 

17 
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and rewrite (3,5) as 

B    R 

0    B    R 

1 
z 0 

XB 
= 

_XR_ 
b 

(3.6) 

where 

A = 

x = and 

c = 

c   is the vector of the components of c corresponding to t lie basic 

variables  x . 

Since  D  is nonsingular,  13  is also nonsingular; 

-1 
CBB 

-1 

Multiplying (3.6) by  B   and then rearranging it, we get 

1   -c'B 
B 

0     B 

-c' ((■' B  R 

B H 

(3.7) 

1« 
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By setting the nonbaslc variables,  x ,  at level zero, 

1  c'B 

0   B 

c'B b 

B^b 

B B 

B"1,. 

where x = B  b. 

If     B     b    is  a  nonnegativo  vector,   the   basis     B     is   feasible, 

and   thus   the  current  solution   is  a   basic   feasible  solution. 

Look   at  any  variable     x.     with   a   corresponding  column     A 
J J 

and   a   cost  coefficient     c   ;      this  variable's  column   in   the   transformed 
J 

system of   (3.7)   is 

-c  +c'R     A 
,1     B .j 

■1 
n   A 

(3.8) 

If x.  is a basic variable,  B A   is the  r ' unit vector, if  A 
J  th •' i 

is the  r   column oi  li.  (Note that, in this case,  c  would be the 
t h 11,     i 

r   component oi  c ,  and  x,  would bo the  r   component of  x .) 
B t n 

Thus   the   first   component   of   (3.8)   becomes 

-c .   +  c'B     A     =   -c      +   c     =   0 
)       li       J        ,1       ,j 

moreovor (3.8) is a unit vector. 

Proposition 3.1.  If all  c. - c'B A    0,  the current basis  li  is 
  .1    B   .] - 

opt imal. 

Proof  of  Proposition   3.1. 
-1 

Assume      0.   =  c,   -  c'B   *A,        0,      V   ;       then,    from   (3.7)   and   (3.8), 
,1 .1 B j   - j 
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cnB '1b +  > b x  . 
/-!  J ,i 

Note that  b, - 0  for j  corresponding to a basic variable.  Thus any 

change from the current solution would result in an increase of some 

x   (nonbasic), and the value of z would increase or remain unchanged. 
j 

Hence no improvement in the objective is obtained with any other 

solution. 
Q. E.D. 

From  Proposition   1,   we   have  an  optimality  condition   for  any 

feasible   basis; 

b.   = c     -   c' B    A .  > 0   , VJ    . 
J j B j  - 

(3.9) 

If,   on   the  other  hand,    the   left-hand  side  of   (3.9)   was   strictly negative, 

for   some     j   =  s,      then   Increasing     x       and  adjusting   the   values  of   the 

basic variables  until  one dropped   to value  zero  (thus   replacing a  current 

basic   variable)   would  decrease   the  objective   function,   provided     x 

entered  at   a  positive   level.      The   simplex  method  changes   the  basic   set 

at   each   Iteration  witli   the  entering  variable,      x   ,      designated   t lie   non- 
s 

basic variable with the most negative relative cost factor,  c..  The 

exiting variable is the first basic variable to be driven to zero as 

the entering variable? increases above zero (assuming nondogeneracy and 

bounded solutions).  The method terminates witli the current basis being 

optimal, when (3.9) Is satisfied for all variables. 

When the variable  x   is chosen as the entering variable, I lie 
s 

exiting  variable  can   be  determined   by examining   the   ratios 

ln'lh] 

K\). 
lor  all      i (3.10) 

where      (B    A 

pressed   as 

0.      From   (3.7),    the  current   basic   variables  are  ex- 
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Thus   the   first  variable  driven   to  zero  in   the  vector    x        is   the  one 
D 

corresponding to the minimum of the ratios defined by (3.10). 

The simplex method can be carried ou  in two ways.  The first 

way (called the revised simplex method) is to substitute  A  which cor- 
s 

responds to the entering variable  x  for A  which corresponds to the 
s       r 

exiting variable x  in the basis  B.  With this substitution both the 
r 

new solution and the relative cost factors can then be calculated.  The 

second way is to pivot in the augmented matrix 

0     C'-C^R 

0 I I^R 

about t lie term IB Rsl ,  where  s  corresponds to the entering vari- 

able and r     corresponds to the exiting variable.  The pivoting opera- 

tions do not change the canonical form of the basic variables which 

remain basic, but they do force the column 

c.-c B 'A 
s  B    s 

B  A 

to  the  canonical   form  of 

where     e       is   the  unit   vector with  a  one   in   the     r component-    this 
r 

will   alter  ail   of  the  other columns   corresponding   to   the  nonbasir 
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variables.  Note that once a feasible basis is determined, the simplex 

method insures that all succeeding bases are feasible. 

To obtain an initial feasible basis, phase I of the simplex method 

adds artificial variables to (3.4) and solves a new linear program.  Let 

E  be an m x m matrix with only diagonal terms, and let  c.  = +1,  if J 11 

b > 0,  and e., = -1,  if  b. < 0;  then, the new linear program is 

iln z =  > 

m 

v 
i 

1=1 

Ax + Ev = b 

x 0,  v - 0 , (3.11) 

and   the   solution   terminates   ir   a   basic   feasible   solution   to  (3.4),   when 

the   simplex  method   is   applied   to   (3.11).      The   optimal   value  of     z     in 

(3.11)    is   zero   iff   (3.4)    is   feasible. 

B.        Quadratic   Programming 

The  standard  quadratic   programming   [31   problem  can   bo   stated  as 

minimize     z   =  c'x   +  x'Qx 

subject    to     Ax       b 

x  '    0, (3. 12) 

where     x   «.   E   ;      c     is  a   specified   n-dimcnsional   vector;      b     is   a   speci 

fled  m-dimensional   vectoi 

is   a   spec 

live semidefinite. 

Since problem (3.12) is a convex programming problem, the Kuhn 

Tu 

Thus a soli L ion,  x 

solution to (3.12). 

A  is a specified  (m '.■ n)  matrix; and Q 

ifled  (n ■ n)  matrix.  It is hereby assumed that  Q  is posi- 

cker necessary conditions are also sufficient conditions for optimality. 

to the following necessary conditions is an optimal 
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u=c+2Qx-A'y>0 

If we define 

v =-b + Ax > 0 

> 0 

> 0 

x u  =0,  y v  =0,  Vi 
i i      Ji i 

.yj 

(3.13) 

M = 

2Q   -A'" 

A    0 

and  q 

the necessary conditions may be written as 

w = Mz + q 

w, z ' ■ 0, 
w. z . = 0,   >.■  _ J ^  _ 

i i 

(3.1-1) 

P, 

where  M is  p v p. 

Complementary   Pivot   Theory.      Problem   (3.14)    is   a   statement   of 

the   fundamental   problem   of   the   c mplemontary   pivot   theory   [31,      Although 

(3.14)   is   solvable   by   this   theory   for  various   classes   of     M,      t lie  dis- 

cussion  here  will   be   restricted   to    M     beiiiR   positive   semidef i nl (e,   as 

it   is   in   the  quadratic   programming   problem   (3.12). 

Note   thai   we   are   looking   for  a   complementary  solution   to   the 

linear  equations   in   (3.14),    i.e.,   a   solution   to 

Mz   +   q 
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with    w z     =0,    Vi.     Wo  will   initiale  with  a   solution   that   is  complc- 
i   i 

mentary  but   that   may  not   be   nonnegative.      VVe  will   then   retain   this 

complementary   property while  seeking  a   nonnegative   solution. 

The   problem  in   the   structured   form  of 

wl cl 

= + 

w 
_ p_ _v 

11 

pp 

(3.15) 

is observed with the transformations beinj; made b\ substituting a vari- 

able  z   (or, in later steps, some w )  in the extreme left column, 
i i 

replacing a variable in the column, and then pivoting on the system of 

equations by changing the column  q  and the matrix  M.  The variables 

in the left column are called basic, ami the variables in the row above 

the matrix  M  (or  M  after translormation) are called nonbasic.  The 

problem is initiated by setting  w   q   and  /,  - 0  for all i .  II 
'ill 

any q. is negative, pick the w.  corresponding to min q.,  and let it 

be a distinguished variable.  The following car. be taken as a general 

i t era t i on. 

Increase the complement [ defined by (3.11)1 of t lie distinguished 

variable and determine the blocking variable,' which is cither 

(a) a basic variable being driven below its lower bound (usually 
zero) by an increase of the driving variable, or 

(b) the distinguished variable which is driven toward zero. 

[The first variable to block m either (a) or (b) becomes the 
blocking variable.] 

II the blocking variable is nol the distinguished variable, 

then replace the basic blocking variable' with the increasing nonbasic 

(driving) variable by pivoting about the point  in    in the matrix  M, 

where m    is the term m the current matrix that corresponds to the 
r s 

s   column (the driving variable) and the r   row (the blocking vari- 

able).  Now increase the complement oi the former blocking variable 

(now nonbasic) until a new blocking variable is found. 
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If the blocking variable at any stage is the distinguished 

variable, make it nonbasic at value zero and make the driving variable 

basic (by pivoting). 

At this point, a complementary solution exists.  Then look 

at all q.  (determined after pivoting) and choose the most negative to 

determine the new (basic) distinguished variable.  The algorithm termi- 

nates when all  q > 0,  The nonbasic variables, placed in the row above 
i — 

the matrix M,  are at level zero, except for the driving variable, at 

any time. 

The pivoting rule is:  pivoting on m_ , 

rs 
rs 

is 

is 

rs 
Vi / r 

m . 
rj 

rj 

rs 
Vj ^ 

m . = m. . 
i J    i .1 

m    m 
irr. 

rs 
V'i ^ r 

Le t  q. 

,1 / s • 

m    and apply the pivot rules given above.  For basic vari- 

ablos that correspond to negative  q,  and not distinguised, we define 

their common lower bound to be 

I' < m i n q . , 

instead of zero.  Thus  P  is the lower bound that blocks t lie decrease 

of a basic variable. 

It has been shown by Dantzig and Cottle [31 that the algorithm 

terminates in a solution to the quadratic programming problem when (3.14) 

has a feasible solution. 
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C.   Generalized Programming 

The generalized programming problem can be represented by 

Choose a vector,  P,  in a convex set, Cc E ,  such that we 

maximize 

subject to U A + Pp = S 

11 = 1, 

(3.16) 

i, > 0 

where LL and S are specified n-dimensional vectors, and p is a 

scalar. [The results here are easily applied to an extended form of 

(3.16), where the linear equations become 

V+   Vl   +   PoJ-2+   •••   +   Vc,   =  S 

Vi 

and each  P.  is drawn from a convex set  C .] 
i i 

* 
Thus, we are looking for some vector  P  or a convex combination 

i* 
of vector  P 

sible, i.e. 

all in set  C,  so that the linear equations are fea- 

V  I.   +   P 
0 

(3.17) 

u x + V P
1
*, 

0   Zv     i 
i 

V 

o , (3. 18) 

and the resulting value of r      is a maximum over the choice of all the 

elements in set  C, which satisfy the linear equations.  Note that, if 
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any set of  P  is in C,  any convex combination of that set is also in 

C.  Hence (3.17; and (3,18) are equivalent when 

1 ^ 

I'i   = *■ ', 1 " • 

The solution procedure assumes we have on hand, initially,  n 

particular choices of P L C  so that the following linear program 

(called a restricted master) 

subject to Vl   + P t  + ... + Pnl  - S 
0      1        ^n 

+ ,  =1 n 

L.   0 (3.19) 
i - 

has a unique, feasible, nondegeratc solution with the basis being 

defined as 

„1     ..n 

0    1 

and beint; nonsingular (by definition).  Since for each  P  •_ C, I' 
V  i 0 0 
zl P ^i' where is a solution to (3.19), is in  C  ;iiul is a 

feasible solution to (3.16), but not necessarily the optimal solution 
0  r 

To test P   Land hence, any solution to (3.16), generated from a 
0 

basis!   for  optimality,   a  row   vector is  determined   to  satisfy 

^3°=   (1,0 0)    . (3.20) 
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From  n,  we find a vector  P 

a value  Ö  so that 

n+1 
which is not necessarily unique, and 

_0-n+l 
if P 

min —0- 

PCC 
(3.21) 

■ ra ■ 
where  P = I , I .  If  t = 0,  tlie current solution is an optimal one. 

If  b < 0,  (3.19) is augmented by  P    and the new linear program is 

then solved.  The general iteration starts with a solution to the re- 

stricted master program 

maximize A 
n+k 

subject to U A +  ) P . 
0 Z-, i 

1 

y. = i 

'1-
0 (3.22) 

Let  B   be the optimal basis to the linear program (3.22). and lot  ^ , 

the dual (optimal) variable to (3.22), be defined analogous to (3.20). 
k    ,  ,:i-,l^l 

I hen,  c   and  P      are lound from the subproblem, 

lo 1 :VJ 
MI in  _k- 

P.C        ' 
(3.23) 

k+1 th 
If     o -  0,      the   solution   to   the   k       iteration  ol   the   mastei 

k+1 
problem is opt i ma 1. 

n + k+1 
),  then  P     can be adjoined to 

(3.22), and the solution to (3.16) is improved.  The value 

the maximum amount by which the value of the current basis 

k+1 
i s 

k 
can be 

improved.  Thus,  A - o    constitutes an upper bound to the optimal 

solution of (3.16).  It is known that these upper bound evaluations can 

vary considerably from one interation to the next.  Accordingly, the 

least of these evaluations is saved from all iterations, includinn the 

curren t one . 
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It has been shown that, if C  is bounded and the initial solution 
_k  —•x-       k*   * r 

to (3.19) is nondegenerato  (u  "'0),  IT -> n and  P   -» P  [where 
i 

n+k 
k* 

1   r\ 
i=l 

and n   is a solution to (3.22)], on a subsequence k,  and that P = P 

is optimal for (3,16).  n  satisfies the properties 

* 
n ^ 0 

*_   *_* 
■jf P -- 7f P =0, for all  P t C 

(3.24) 

Moreover, if C  is a polyhedral set, then the subproblem (3.23) is a 

linear program, and the iterative process terminates in a finite number 

of steps.  It should be noted that, in any case, the objective function 

improves with each iteration, and a feasible solution always exists to 

the master problem.  Also, t lie initial solution (or columns) for (3.19) 

can be obtained by a procedure simitar to a phase I simplex method. 

Remembering that the usual form of a generalized program includes 

the sum of the vectors  P. v C ,  where the  C  are convex sets, the 
i    i i 

vector  S need not be fixed, but it must be drawn from a convex set, S 

Thus the generalized program becomes 

ma x 

P, S 

- S- = 0 

= 1 

■-- 1 (3.25) 

where     P  c   C     and     S  ..   S.      In   this   case,    the   subproblem   is   extended   to 

find as   in   (3.23)   and 
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_    =  min   n   S 

[?]■ 

s t S 

k k 
If     o       or    A    <  0,      t lien   the  corresponding  vector  or where  S 

k        k 
vectors is entered into the master problem.  If both  b  and  A = 0, 

the current solution is optimal. 

The generalized programming problem, 

Primal: 
max A 

U0A + P.. = S 

i. = 1 

P <. C (3.16) 

has as its 

Dua 1: find a vector 

"P 

1 

so thai 

0 ,     VP . C 

0 ,     some  P ^ C 

(3.26) 

This dual is the equivalent of finding a particular hyperplano to support 

the convex set  C.  If a solution to the dual is known, then a solution 

to the primal may be found using the dual solution,    ,  to find the 

vectors,  P  <. C,  that satisfy 

= 0 

If     P       is   unique   and   the   primal   has   a   solution,      P       must   be   the   solu- 
-¥■ 

tion.      If     P       is  not   unique  and   the   primal   has  a   solution,    then  some 

convex   combination  of  all   the     P       must    form   the   primal   solution. 
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Chapter   IV 

PARAMETRIC   PROGRAMMING 

In   this   chapter,   algorithms  are  presented   for  solving   parametric 

linear and   quadratic   programming  problems,   whsro   the  dependence   on   the 

parameter   is   nonlinear  and  occurs  only   in   the   linear  part   of   the   objec- 

tive  function.      These  parametric   programming  problems  arise   in   the  sub- 

problem  of   the   generalized  programming   formulation  of  the   optimal   control 

problems. 

A.        Parametric   Linear  Programming 

We  consider   the   following  problem   linear   in     x 

find    x   (t)    to 

minimize    / (t) ' x 

subject   to     Ax   =   b 

x    -  0 

i > r^.Tj , (4.1) 

and   the   following   problem  quadratic   in     x 

find     x   (t)      to 

minimize     /(t ) ' x   t   x Qx 

subject   to     Ax        I) 

x        0 

t <  n-^-rj (1.2) 

In   both   of   the  above  cases, A     is   n  given     m   •   n     real   matrix,      b 

is  a  given   n-dimensional   vector, Q     is   an     n   ■   n     positive   semidefinite 
n 

matrix,      x      is   a   vector   in     E   , and 

/ ( I)   =   [ / 1 ( O     / k ( ' ' • /N.(t)l ( 1. 3) 
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is a given vector valued function, each component of which is a solution 

to some homogeneous, linear differential equation with constant real co- 

efficients   that   may  depend   on     k.      Such     /,(*)     are   of   the   form 
k 

(0   = 

N 

y i3M(t) e 
Zw       ki 
i=l 

Skit 

(4.4) 

where  p .(l)  is a polynomial witli real coefficients of degree m . 
ki ' 

so that 

ki 

N 

in   = N 
Z_.  ki 
i=l 

and 

s 
ki + 1 

j    are constants so that, if  s    is complex for  i  odd, 
ki ki 
is its conjugate and  p, .(t) = p , .(t).  It follows then that 

ki ki + 1 
these     /   (t)     are   real-valued   functions  of     t. 

k 
The   lemmas   and   theorems   that    follow  arc   required   to   show  convergence 

of   the   proposed  algorithm. 

Lemma   4.1.      If     /   (O      is  a   solution   to  a  homogeneous   linear  differential 

equation  with  constant    real   coefficients   of  order     N     and   if   for 

some     t   =   'n 

;: (1) 
_d_ 

(t) 

dN   '[//Dl 

di 
N'-l 

then     /y(t)        0     for  a 11   t 

Proof  of   Lemma   4.1. 

/   (t)      solves   :in  jquation   of   the   form 
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dt 
N   ^(t) = V*(t) + ai -IT- +   . . .   +  a 

N-l 

d^/Jt) 

dt 

(4.5) 

At       t   =   t 
0' 

,(t) 

dt' 
t =t 

(1.6) 

By   tnkinp;   the  derivative of   both   sides   of  (1.5)   and   substituting  (4.6), 

N+l 

dt' 
^^(l) =  0 

t=l. 

If this procedure is continued, all derivatives of  / (')  at  t = t 

become zero.  Therefore, with  /..(') ~ 0  and all of its derivatives at 

zero for  t = t   and with  /^(l)  beiiiR able to expand (al  1=1 )  to 

a Taylor series,  / (t)  must be   constant and have value zero for all  t 
¥ 

Q.E.D. 

Defini t ion    1.1.      A   vector     y      is   said   lo  be   lexicographically  Rreatcr 

than   zero,    if at    least   one   component    is   non-zero   and   the   first   such 

component    is   positive;    I his   vector   can   be   denoted   as 

\   ^   0 

A   vector     y     is   lexicoRrophical ly  greater   tl lan   a   vect or     z, 

if     y   -  z ^-  0.      A   vector   is   said   to   be   lexicographically  greater  or 

equal   to  zero,    if   it   is   lexiconraphically   m-eator   than   zero  or  equal 

to   zero, 

M', 

 ■  c  
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A similar dciinition is true for one vet-tor to be lexicogrnphically 

greater or equal to another vector. 

Definition 4,2.  Let  /*(*)  be a real scalar functior  "  t.  Then the 

N-component vector  D  (t)  can bo defined by its components 

d^1, (t) 
D  (t) 

dt 
i-1 

Thus   the  vector   function     D     (t)      is  defined   by   the   function     /„(t) 

and   its   first     N-l     derivatives. 

Lemma   4.2   [10].      If     f(x)      has   a   derivative   at      c     and     f'(c)   > 0,      then 

a   positive   tuimber     0     exists   so   that   for     c <   x <   c  +   0,   f(c)   <   f(x) 

Theorem  4.1.      Let     /   (t)      be   a   member of   the  class   of   solutions   to  bo- 
th 

mogeneous, constant real coefficient, N  order, linear differential 

equations, and let  I)  (t)  exist as it is defined in Definition 4.2. 

Then, if  D  (t ) = 0  or if  D  M ) ;- 0,  a  o - 0  exists so that 

;#(t) _ 0  when  t t 
f
'Q'^ + ) 

Proof   of Theorem    1.1. 

If     D     (t   )   -  0,      then,    according   to  Lemma   4.1,      /.(')   =0      for  all 
I -. 

t     and 

If     D     (1)^0.      either     /   (t„)       0     or   its   lowest   order 
/*     0 *     0 

dcrivative--onc   that   is   non-zero  at      t   --   t   --is   greater   than   zero.      If 

I   (t   )        0,      then,    by  continuity   a 
*     0 

0  ex ist s for  / ,(',,)   ()  when 

t c [t ,t  4 :) .  If  ,',(1 ) = 0,  let the lowest order, non-zero deriv- 

ative at  t = t   be the ,j " ^ derivative, and let 

1(1) 
dl 

,1-1 
/,(') 

:i t 
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Thus     f'^1^)   "' 0     ancl>    by  using   Lemma   4. 2,    a     O     does  exist   for 

t     <  t  < t„  +  5,      so   that 
0 0 

dJ-l j-1 
/*('J    =   f^n)   <   f(t)   =   -^—   /ft) 

dlJ-i '*   0 ^ o    — dij-i '. 

From Taylor's   theorem,    it   is  known  that   a  number     ;,      between     t 

and     1,      exists   for  any  given     t,t    <t<t     +c     and 
0 

J-1 
- • "   w'- ^ '    + — ;J-t)(t-t )J"1 

(j-D.'dt^1 * 0 ^(t) ^*(to) +dT^(to)(l-,o) + • 

Since 

,.' -O 

dt 

and 

,1-1 ,.1-1 

/^(O ■_ 0.  Hence, it follows that  /,(i)   0  for all  t •, (" I , t  + b) . 

Q. E. D. 

The   first   algorithm   presented  here   is   based   on   the   simplex  method 

and   solves   problem   (1.1). 

Find     x   (1)      id 

minimize     / ( t) ' x 

sub ice i    to     Ax   =   b,x       0, 1   v    f T   ,'!'   1    . 
- 12 
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Here,     ;(l)      is  a   vector  whose   i       component,      /.(O,      is  a   real   scalar 

function.     At   time     1   ,      let     B      be   an  optimal   basis   for  the   linear 

program 

minimize     /(t   )'x 

subject   to    Ax  =  b 

x >  0   . (4.7) 

Let   the  solution   be     x = x   (I   ).      Since     x   (t   )     is  a   feasible   solution 

to    Ax  =  b.x > 0,      it   remains  a   feasible   one   to  problem  (4.1)   for   all 

t,     but   it   is  not   necessarily an  optimal   solution.     Thus  how  the  opti- 

malitv  test   for     D       varies  as     t     lakes   on   the  values     t   =  t     +  t, 
^ 0 0 

where     c  > 0,     must   bo   investigated.      Let 

V'V   =   V0    -   ^B   (n    B0   Ak   ' 
(4.8) 

where    A       is   the   k       column  of  the  matrix     A, 
k 

e      =   inf  !'tl/, (tA  +  Cl B)   <  01   , and 
k k     U U 

(4.9) 

t     -   mm   i, 
ü k       k 

(4.10) 

It   is   possible   that    the     .    ,      presented   above,    is   zero.      >   (t,B  )      is 

the   relative   cost    factor   for  any     t     of   column     k     when     B       is  chosen 

as   the  basis.     Then   the   ordoriiiR  of  columns     A     can  be   taken   so   that 

A A       correspond   to   the     m     columns   of     B   . 
1 m 0 

For  any   basic   variable     x.,      associated  with   the  optimal   basis     B  , 

~i(,'Bo)  " /i(,)  " 'n (,)  "o^i  = /
1
(,)  ' /i(,)  = 0'    V1   • 

(4.11a) 

And,    for     t   =   t 

'■k(,o'Hü) -0' 
(4.lib) 
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with  equality being   held  when     k    corresponds   to  a   baFi.:   variable. 

Therefore,   the   solution   to   (4.1)   remains  optimal,   i.e.,   it   satisfies 

/   (t.B  )   > 0     when     t   i   [1,1     +   t   )      for   some     c     > 0,      given   by   (4.10). 

Let     /   (t,B)      be   the   j''1  derivative   (with   respect   to     t)     of   the 

relative  cost  vector     /(t,B)     when     B     is   the  basis  under consideration. 

Let     /j(t,B)     bo   the   component   of  the  above   vector corresponding   to 
k 1 

column     k    of    A,      Let     A       be   the  now   linear  programming matrix  ob- 

tained  after  deleting  all   columns   (variables)   for which   the   relative 

cost   factors     /i^'-n'^n^   =  /'i^tn'Bn^     are   strictly  positive   for     t  =   t 

A  general   iteration   is  given with     t     =   T   ;      a   flow  chart  of   the   algorithm 

follows   the   iteration. 

Step  I:     Solve  the   linear  program 

minimize     ■(t   ) 'x 

subject   to    Ax   :    b 

x        0 (4.1.2) 

to  obtain   the   optimal   basis     B   .      If   the   solution   is  unique   at      I 

(i.e.,   all   relative   cost   factors   for  nonbasic   variables  are   strictly 

positive),   proceed   t->  Step   III. 

If   the   solution     s   non-unique,    lix      t   =   t        and   proceed   to   Step   II, 
0 " 

starting  with      i   =   1     and     A     = A. 

Step   II:      Let    the   matrix     A'      be  composed   ol    the   matrix     Hj-l      and   all 

k     columns   of     A having   t lie   relative   c-cist    factors     /       (t    ,B        )    =  0, 
_•_, ' 0     ,j-l 

where     /'      (t   ,B.      )      refers   to   the     (j-I)'      derivative.     To  simplify 

notation   in   (4.13)    below,    let    the   new     x     any     /      vectors  corresponding 

to     A'      also   be  denoted   by     x     ami     /,      allliougli   they  are   now   shortened 

x     and     ;     vectors.      Then,    solve   the   linear   program 

;i7 

ammm 
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minimize     /' (I   ,B .     )'x 

subject   to     Ax   -   b 

x > 0   . (4.13) 

Let     B.     denote   the  optimal   basis.      [Computationally,    it   is   convenient 

to   start  with   the   previously  optimal,   basic   feasible   solution   corre- 

sponding   to     j-1     and  then   to  apply   the   simplex  method   to obtain  an 

optimal   solution   to   (-1.13).!      If  the   solution   to   (4.13)   is   unique   or   if 

j  = N   -   1,      use   the  optimal   basis     B       and   proceed   to  Step   III. 
J 

If   the   solution   is  non-unique   and     j  <  N   -  1,      increase     j     by     1 

and  repeat   Step   II. 

Step   III:      Using   the  optimal   basis   from  Step  I   or   II   in   place  of    B       in 

(4.8)   and   (4.9)   for  all  columns     k      (optimal  basic  columns   can be   ignored 

since   their     t     =  +<*)     find     ,    .      Then   calculate     t   .      The   solution, 
* _!        k k ü 

x   (t)   -  B     b,      is   then   optimal   for   all     t   ,.   M   ,t     +   c   1.      Moreover,   it 

will   bo   shown   that     ^n ^ ^• 

If     ^n   +   cn    '   '9'      t'le   Parametric   programming  problem   is   solved, 

However   if   the   solution   is  not   reached,   repeat   the general   iteration 

with     ^   =   ^   +   -Q     replacing     t^ 

That    this   algorithm  does   terminate   in   a   finite  number  of   steps   to 

a   solution   of   (4.1)    for  all      t   •    [T   , T, 1      remains   to   lie  shown.      The   re- 

mainder  of   this   section   is  devoted   to   showing  a   finite   number   of   steps 

to   t he   so in t i on. 

Lemma   4.3.       If   the-   relative   cost    factors   for   some   basic     I!        are   zero   (01 

a   subset   ol   columns    S     and   positive   for   the   remaining   columns    T, 

then   the   same   is   true   for  any   basis     1!       whose   columns   arc   in     S. 

Proof  of   Lemma   4.3. 

The   vector  of  coefficients  of   the  objective  equation  of   the  original 

matrix   can   be   replaced   by   the   relative   cost   vector   for     B   .      The   price 
0 0 

vector     -        of  simplex  multipliers   relative   to     H       satislies      ••   B     = 0 

3H 
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lo   form    A-'     matrix   and 

shortened  cost   and     x     vector. 

Let 
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x ^ 0 
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.) 
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-K.^n^     o 
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and   that   of     n   B     =  0,      since   the   objective  coefficients   for  both 
0 1 

columns   of     D       and     B       arc   now   zero   by  hypothesis.      Hence     n     =   n     =  0, 

and   it   follows   that   their   relative  cost    factors  are   identical. 

Q.E.D. 

Theorem   4.2.     At   the  end   of   the   general   iteration,    the   following  vector 

relations  are  satisfied: 

Df/k(t0.B)] 

/    ( t    , I!) 
' k     0' 

;U<V" 

N-l 
7   /,(tn,D) 

(it 
N-l    'k     0 

>    0 

for    k  =  1,    . . . ,   n 

D[/    (t   , B)]    =   0 for   nil      k 
k     U , 

where  B  is the final basis on terminaIing the iterat ion 

Step II at  I . 

Proof (i f Theorem ■!. 2. 

For  k  correspond inn to the basic variables of (1.11), 

1)[/ (t ,li)|- 0.  For the basis  H,  let the basic variables be  x , 

and lot the nonbasic variables be  x . The problem is separated ns 
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(4.14) 

z - 
B' 'R 

XB 

XR 
—             — 

= 0 

By pivoting on the m + 1  rows of (4.14), the first  m  columns are now 

unit vectors, and t lie system becomes 

I i R 

-—       — 
XB 

_XR_ 

= b 

0 
"R 

XI3 

*~ -J XR 

where     ;        is   the   relative  cost    factor   vector of   the  nonbaslc   variables. 

R     is   separatee!   into   two matrices, R       and     R   ,      so   ilia I    the   relative 

cost   factors   corresponding   to   the  columns   of    R     are   zero, and   those 

corresponding   to   the  columns   of     R       are   negative.     Then,    the   problem 

rows 
1 m 

r-           —n 
X 

B 
r- 

'; ^ 
R
2 

% 

J\ 

row 
m+1 'V{o']i)  '0 

X
H. 

11 
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row 
m+2 ■ 

_1 
(t , R) 

I? 
(4.15) 

is  observed,   where only   Che   variables   correspond in,;   to   the   columns  of 

R     and     I     are   allowed   to  enter   the   busis. 
1 

According   to   Lemma  4.3,    the   pivoting  procedures   of   the   simplex  algor- 

ithm   retain   the  zero  elements   ol   row     in  +  1     at   level     Ü     and   the  positive 

elements  of   row    m +   1     are   at  positive  values   for  every   stage;    thest 

piocedures   term.iate  with   all   relative   Lost   factors   of   row     m   +  2,   corre- 

sponding   to      I     and     K   ,     at   nonnegative  values.     At   termination,   because 

of   the   simplex   method   stopping   rule,    a   new   set  of   basic   variables   is   found 

having   the   property  of   the   component       )1   the  basic   variables   in  rows    in +   1 

and     m  +  2     being  at   zero   (after  pivoting);   the  components  of   the  nonbasic 

variables   are   either 

(1) zero   in  row     m   +   1     and   nonnegative   in  row     m  +  2,      for  vari- 
ables   corresponding   to   columns   of     1     or     K       in   (4.15)   or 

(2) strictly   positive   in   row     m   +   1,      for  variables   corresponding 
to   columns  ol      Ri  , 

If   the  variables  are  as   in   (1)   above,    the  ones   having   zero   components 

in   row     m   +   2     are   chosen  with   their   columns   for   consideration   in   the 

next   stage   of   the  algorithm.     Once   a   nonbasic  variable   has   a   positive 

relative   cost    factor   at   any   stage     ,] ,       it   can   lie   assumed   that    its   rela- 

tive   cost   factors  were   at   zero   ia   previous   stages   also;    hence   it   can   no 

longer   enter   the   basis.      Since-   the   relative   cost    factors   in    the   first 

Hi K -   1     stages   can  never  change   sign   by   pivoting   in   the   k        and   later 

stages,    its   derivative  vector  must   be   lexicographically   greater   than     (). 

Thus   at   completion  of   the     N'     stages,    all   di rivative   vectors   must   lie 

lexicographically   greater   than   or   equal   to  zero. 

O.K.!). 

Theorem 4.3.  The basis  B,  obtained at tne end of Step 11 in the 

a Igor i thru for any  t 

w here It    , t       + 
(1     0 0 

remains   optimal    for   the   interval 

-   s tri c I 1 v   posi t i ve . 
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Proof  oi   Theorem '1.3. 

Since   each     >   (t,D)      is  a   member   of   the  class   of   solutions   to  homo- 
k 

geneous,   constant   coefficient,   linear   differential   equations,      t       is 
k 

strictlj" positive by Theorem 4.1. By   the definitions given for  t  and 
K 

t ,  the basis  B  satisfies the optimality criteria for 

1 -^o'S, +  ^oJ 

i.E.D. 

Theorem 4.4.     Tlie  number  of   basis   c'.ianges   in  any   finite  interval   [T   ,T  ] 

is  a   finite  number,   and   the   parametric   programming  problem   is 

solvable   in  a   finite  number  of   steps. 

Proof  of  Theorem  4.4. 

At  anv   switching  point     t   ,      there  exists a   basis    B       and  an 
ü p 

t_     >  0,      so   that     13       is  optimal   for      t   >.tt   ,t     +   -   ) .     There   also  exists 
p p 0     0 p 

a   basis     B       and   an     L    >  0,      making     B       optimal   for     t   -It      _    -   it   ). 

It   follows   then,    if   there   is   a   clustei'   point   at     t   ,      there  would   be  an 

infinite   increasing   sequence   ol   switching  points     t      ■_ I l     -   <_   , t   J 
i Ü 0 

which  could   be   bypassed  by   a   single   switch  at   any   such     t,      to   basis 

B   .     This  establishes   the   existence   of   a   finite   number  of   basis   changes 

in   anv   finite   interval     t   -.[T   , T   I . 
1      2 

What   remains   tu  be   shown   is   that   the  algorithm,   as  presented,   solves 

the   parametric   programming   problem   in   a   finite  number  of   steps.     As  dis- 

* cussed  above,    let   us   assume   there   is   a   switching   point     t      Al     -    .   , t   J 
i (J 0 

and   a   swi tch   f rum  basi 

us   also  assume   that     li       differs   from     U 

B to     B   .     To  simplify   the discussion,   let 
i-l i 

by   tlie   introduction   ol   one 
i i-l 

incoming column  k,  and that tlie value of the incoming variable  x 
0 k 

x  > 0,  i.e., the basic solution is nondegenerato. 
k 

The optimal value ol the objective /        in the neighborhood ol  t , 
i 

takes the form of 

z = zn(t,B.  ) + ' (t,B,  ) ' x, 
0    i-l     k    i-l    k 

0,   if  t < 1 
—  i 

o 
x  ■ n 
k 

t • t 
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Both  z„(t,B  ,)  and  ; (t,B  ,)  can bo shown to bo linear combinations 
0    i-l        k    i-l 

of solutions to homogeneous, linear differential equations with constant 

real coefficients and hence they themselves are also solutions.  In addi- 

tion for  t , / (t ,B   )   <   0,   otherwise there would have been no switch 
1  'k  i  i-l 

from  B.    to  B..  This means that the vector of the  0,1  ,2  , ..., 

st — 
N-l   order derivatives of  /,(t,B  ),  evaluated at  t.,  is loxi- 

k    i -1 i 

cographically negative.  It follows then that the function  z  is discon- 

tinuous in  t  at  t   in at least one of its  i  order derivatives.  On 
  1 * 
the other hand, the optimal value of z,  in the interval  t t[t  - L ,tn 1I 

can also be expressed as 

z = z0(t,B ) 

and   is  continuous   in   all   derivatives  at     t   ,      which   is   a   contradiction. 
i 

The above argument is now extended to the case where  B,    is as- 

sumed to differ from  B   bv several incoming columns.  The term 
i 

x  /    (t,B       )      is   then   replaced   by  a   sum  of   terms,   each   of  which   is   lexi- 
k   k i -1 

cographically  negative   at      t   =   t.,      hence   their   sum   is   lexicographically 

negative   and   the  discontinuity   at      t   =   t.      follows.      (Note   that   t lie   de- 

generacy  of  basic  solutions   in   the   simplex  algorithm   is   assumed   to  be 

handled   by   the   standard   right-hand   side   lexicographic   rules  of   the 

simplex  method.) 

Since  eacli   basis   change   is   accomplished   by  a   finite   (at   most     N) 

number  of   linear  programs,    the   parametric   programming   problem   is   solv- 

able   in   a   finite  number  of   steps. 

Q. E. 1). 

Corollary   4.1.      The   solution     x   (i)      lo   (1.1)    is   a   piecewise  constant 

vector   function   of     I     with   a   finite  lunnber  of  discontinuities. 

Proof  of Corollary 

Since     x   (t)      is  constant    for     t   ^Tt   ,t     +   ,    \,      this   follows   im- 

mediately   from  Theorem   1. 1. 

Q.K.I). 

M 



Proposition 4.1.  When all the  s   for each  > (l)  are real, the upper   j j 

bound  on   the  number  of  switchings   in  an   infinite   time   interval   for 

an      (m  y  m)     mat rix  A     is 

n 
l|(n   -  m)   N 

Proof  of   Proposition   4.1. 

For   any     /   (t)      that    is  a   member  of   the  class  of  solutions   to an 

N       order   homogeneous,   constant   coefficient,    linear  differential  equa- 

tion  and   for  real   and  distinct      s.,      it   is  known   [11   that   t lie   function 

/At)     lias,   at   most,      N  roots  of     /„(O   =  0. 

At   the  most,    there   are    I      )     possible   bases   lor     A;    for  each  of 

these   bases,    there  are     (n-m)     nonbasic   variables.      For  each  nonbasic 

variable     x   ,      the  relative  cost    factor     ;   (1,1))     has   at   m(5st  N   points 
i i 

at whicli   it   crosses   the  value  zero  and   thereby creates  a   possible  basis 

swi tch. 

Q. E. I). 

13.   Parametric Quadratic Programming 

The conditions for which the parametric programming problem has a 

solution are found in this section.  Also, an algorithm based on the 

complementary pivot theory procedure for quadratic programming is 

constructed. 

The quadratic programming problem 

(ind  \ (i) to 

mi n nni /.e  / ( I ) ' x + xQx 

sub.jec t i o Ax   b 

\   0 , I  (T ,TV1 , (1. Hi) 

15 



can  be   formulated   in   the   complementary   pivot   theory  as, 

find     w   (t),      z   (t),      so   that 

w  = mz  + q (t) 

w  z     = 0,     Vi 
i   i 

w     > 0,      z.    ■ 0,    Vi   , 
i   — i  - 

(4.17) 

where 

M  = 

2Q       -A' 

A 0 

q(t)    = 

/(t) 

and 

where     y     is   the   vector  of  dual   variables   to   the  quadratic  programming 

problem,   and    u,v     arc   slack   vectors  of   the   necessary  conditions   for 

quadratic   programs,    as  was   stated   in Chapter   III.      The   necessary  con- 

ditions   in   (4.17)   for    Q     positive  semidef im tc  are   sufficient  at 

an}'     t   =   t   ,      From   the   results  of   Dantzig  and  Cottle   [31,    the   complemen- 

tary   pivot   theory  algorithm   terminates   in   a   solution   to   (4.17)   when     M 

is   positive   semidefinite,    providing   the   solution   set    for 

Mz   +   q, w       0, 0, 

is   nonempty. 

To  show   that   the   above   solution  set    is   nonempty,   a   solution   must 

be   shown   to exist   for  every     t      in   the   parametric   programming  problem. 

If   such  a   solution   does  exist,    it   must   satisfy   the   conditions  of   (4,17') 

Therefore,    let   us   assume   the   absence  of  unbounded   solutions,    i.e.,    that 

the   set 
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X   =:  [xjx > 0,   Ax  >  b] 

is   bounded  and  nonempty. 

Proposition  4.2.      The   parametric   quadratic   programming   problem  has  a 

solution   for  every   point      t   t[T  ,T  ],      when     X     is   nonempty  and 

bounded,      /(')      is   a   vector   function  with  each  of   its   components   bounded 

in   the   interval     [T  . T  1 ,      and     Q    is   positive   semidefinite. 

Proof  of   Proposition   4.2. 

Since   the   objective   is   continuous   in     x     over  a   compact   sot     X,    it 

attains   its   infinum  at   a   point   in     X. 

Q. E. D. 

Propos i t ion '1.3.  Given the above conditions on  /(I),  X,  and  Q,  t lie 

form  w = Mz + q, w, y.       0,  w z  = I)  has a solution for every 
— i    i 

t   tfT   .T ],     and   this   solution   can  be   found   by  using   the  methods  of 

complementary  pivot   theory   in   a   finite  number  of   pivot   operations   on     M. 

Proof  of  Proposition   4. 3. 

As   stated   above,   Dantzig   and   Collie   [3l    have   shown   thai    Lhe   comple- 

mentary   pivot   theory   algorithm   converges   to   a   solution   of   Lhe   quadra Lie 

programming  problem,   it   the   solution   set    (or     v.       Mz   +  q,   w,z  _ <),      is   non- 

empty.       Since     X      is   nonempty,    and   since'   lhe    infinum   of     / ( t ) ' .x   +   >;' Qx 

is   attained   in     X      for  each      1,       then   I lie   necessary   and   sufficient   con- 

ditions,    i.e.,   a   solution   to   (1.17),   must   exist.      Thus,    the  conditions 

ior   termination   of   the  algorithm  are   satisfied, 

Q. K. I). 

'(emembering the characteristics oJ  /(L)  explained earlier, we 

will now show that oni\ a finite number ol solutions iire considered when 

solving the parametric programming problem for all  t  in the finite 

interval,  [T ,T ]. 

 Li, 



Theorom 1.5. There are n finite number of changes in the set "| basic 

variables of (4.17) for the parametric programming problem over a 

finite interval. 

Proof of Theorem -1.5. 

Let the  M matrix be  (n v n) .  Since each complementary solution 

/ 2n \ 
has n  basic variables, there are, at most,     1 complementary solu- 

tions.  By using the pivoting procedures, the characteristic of any 

solution is 

q(t) 

" 2 

+ M 

W 
_           _ L   — -J 

where     w     is   tlie   set   of  basic  variables   of   the  vector    w, 

w 
L _ J 

and  /.,  the set of basic variables ol the vector  / 

am-  t,  is 

The solu tion, for 

q(t) 

The vector iunction  q(i)  is of the form / (t) ,  and eacli component oi 

q(l)  has a finite number oi zero crossings in any finite interval of  t 

Let those points bo   labelled, 

solution.  The set of points 

1 

V 
1   1 

1 ' '2' 

1 ki 1   r .,    ,l1 

tor the i   complementary 

iW '■"  ^i!1) 

■18 
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are the only points at which the set of basic variables can change in 

the finite interval.  The set T  is countable and has measure zero.  If 

the points are ordered, i.e.,  t.,t, , . .., t ,  then a set of basic vari- 
U  1      K 

ables that remain basic must exist for any interval  ft.,!  ,),  This is 
,1  J + l 

true because a solution has been shown to exist for every  t t[t ,1   ), 
J  J+l 

thus the set of basic variables cannot change in this interval. 

Q. E.D. 

At this point, an algorithm is presented to provide a basic solution 

to the complementary problem; this solution remains optimal over a posi- 

tive interval.  The method user! docs not require prior knowledge of the 

switching points and does not assume nondegenerate solutions at these 

points.  The algorithm employs the same pivoting procedures of the com- 

plementary pivot theory algorithm presented in Chapter III. 

Definition ■!. .'3.  U'o will say a vector  y,  which is lexicographically 

smaller than zero (i.e.,  -y ^ 0)  lexico-increases to  y,  if 

(y - y) ?- 0,  and if the component i I  ~  corresponding to the first 

nonpositive component of  y  becomes nonnegative. 

Definition -i .-1 .  We will define a lexi co-mi nimum of a set of vectors as 

that vector  y  where all the oilier vectors in it are lexicograph- 

ically greater than or equal to  y. 

Definition 4.5.  For every  t ,  D- (t )  is defined as the vector 
 J        0 (i        t) 

i 

vv 
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whore  q (l„)  is the current value nf the i   component of  Q(tn) 
i  0 u 

under the pivoting procedures (i.e., those procedures leading to 

a particular complementary solution).  Let 

c  =:infft|q.(t„ + <i)<0| , 
i    ,      i  0 

and let er   = min i 
0    j   i 

We will now present an algorithm for solving the parametric quad- 

ratic programming problem.  It should be noted that this algorithm is 

also applicable to the parametric linear programming problems discussed 

in Section IV.A; however, this method is more complicated.  A flow chart 

and proof of the algorithm's finite termination will follow the general 

iteration given here for any  t = t . 

Step I:  (a)  Solve the complementary pivot theory problem 

w ■  \Iz + tl( 'rj^ 

W 7.       =    0, w, /. 0 , 
i i — 

for positive semidefirite matrix M, and  (h)  examine the nonnegalive 

complementary solution for  t   t ;  i.e., is 

I)- (t ) r- 0 
q.  I) 

i 

»r  - 0 ■' 

If Dr? ( I ) r-- 0  or equal to zero, proceed to Step III; Lli  0 
go to St ep I I. 

if it is not 

Step II:  Choose an index  i  so that  Un.O )  is a minimum over all 
  ' i  I) 

the derivative vectors that arc lexicographically less than zero. Retain 

all other variables of those variables which have derivative vectors lex- 

icographically less than zero, at their present lower bounds, or lot them 

In' lease (when forced to decrease they are blocking variables). Then let 

the basic variable corresponding to  i  be t lie c istinguished variable and 
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Let    xo - Tl 

Solve 

w   =  Mz   +   cl(tn) 

w   z     =0 
i   i 

w  >  0 

z  >  0 

Are   all     D-   (t.) ?-  0 
cl.     0 

i 

or  = 0? 

NO 

NO 

YES 

Pick     i     so   that     Dn-.O   )      is 
Ml       0 

lexico-mlnimum and   let   i^'1 

basic   variable   be  distinguished. 

Use  complementary  pivot   theory 

algorithm   to   increase     tW-^'fJ 

while   kecpinp  all   variables     j, 

0    at   the ii' 

lower   bound. 

so that  q.(t ) 
,)  0 

Proceed until distinguished variable 

lexico-increasos (by leaving basis 

at love 1 zero). 

TERMINATE 
i 

YES 

Is  S-V 

Replace with     t     +  e 

Find    e   ,   Vi 

and     t" 

FLOW CHART  FOR   PARAMETRIC   QUADRATIC 

PROCRA MM ING  A LGORITHM 

51 

mmm «ytefe lMMI>tllrinillMIIMKirli \Mmä "■^^•■^ir~r'vtmmmmm*mmm\'imMitoitom «■'iHwwiMiiniiiiiiimiiiiii fi»inliiltirlrf 



^fmmmmmmmmaamsMmm JIWI II JI I^ »munpiimm.,...^...■■..■■ ^n- 

perform   the   staiularcl  complementnry   pivot   algorithm with   the   new   lower 

bound   restrictions;   terminate  when   the  distinguished   variable   lexico- 

graphically   increases   (i.e.,   when   it   drops  out   of   the   basis   by  becoming 

level     (!) .      The   solution   of   Step   I    is   used   to   initiate   Step   11.      Now, 

return   to   (I))   of  Step   I   with   the  current   solution. 

Step   III:      Using   the   previous   definitions,   calculate     L,      for  all     i 

and     t    ,      the   minimum  of     .   .      The   final   basis   at      t .      is   then   optimal 
0 i 0 

for   t a.0.to 1.       If  a   solution   for     t        ' i   '   'n      ls   |l(,siri'fli   r0 

turn   to   (b)   of  Step   I,    using   the   solution   at      I      *   ,    ,      ..ml   proceed  with 
0 0 

the   algori t hm. 

The   procedure  given   here   provides  a   solution   to   the   parametric 

quadratic   program   for  any   interval   ol    (ho   parameter. 

It   remains   to  be   shown   that   each   step   in   the  algorithm  does   termi- 

nate   in   a   finite   number  of  executions  and   that   the   final   basis  genorated 

at   any     t        is  optimal   over  a   finite   positive   interval   for   the  quadratic 

program.      Hence   the   remainder   i>l    t Ir s   section   is   devoted   to   this   proof. 

Step   1    is   solvable   in   a    finite   nuniber  o|   steps,    if   the   problem 

w        Mz   +   <|( t    ) 

u'z    -   0, u , /       0 

can be solved.  Since it is known (hat the quadrat ic program has a 

solution for every  t,  we ure assured nl the complementary pivot theory 

algorithm converging to an optimal solutinn in a finite1 number i>| steps. 

Proposition I. 1.  Step 11 musi terminate with a complementary solution 

hav i nu t !,c der i va t i ve vector ol i ho d i s t i ngu i shed var i able lex i - 

cographica1ly increased while othei variables at their lower bound 

are not lex i ci i-dec rea sod. 

Proof (if Propos i t ion 1.1. 

The complementary p.vot theory algorithm  '.'.lien init iated in t h n 

basic (complementarv) soluli m, torminales in another complementary 

solution, since we assume feasibility ol the quadratic program.  Because 

immmmnnhiiaiimfii^ «wiiiiiiMl^aMiltiiiWMiiMiiMiäitiaii^^  inMMniiii i i itoKnn i<J 
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the   distinguished  variable   and   its   complement   are  converging   to  a  non- 

negative  complementary  solution,    this   termination  occurs  when   the  dis- 

inguished   variable   leaves   the   basis.     When   it   leaves   the   basis,   the 

variable  has   a   derivative  vector  equal   to zero;   thus   it   has   lexico- 

graphically   increased.     All   other   variables,   at   their   lower   bounds,   were 

not   permitted   to  lexlco-decrease;   all   variables  entering  the   basis  are 

permitted   to   increase  only.      Thus   the  new  solution  has  no  variables 

lexicographically  less   than   zero,   and   t lie  distinguished  variable   is 

lexi co-increased. 

Q.E.D. 

Theorem 4.6.  The algorithm terminates in a finite number of steps to a 

complementary ba^-is that is optimal over a finite positive interval. 

Proof of Theorem -I.G. 

The execution of Step II lexico-increase at least one of the vari- 

ables that was lexicographically less than zero while not loxico- 

decreasing any of them; and it docs not introduce any new variables 

lexicographically less than zero.  Since there are only a finite number 

of lexicographically less than zero vectors (at most,  n)  and since 

each has, at most,  n  components, t lie execution of Step II must termi- 
2 

nate after at most  n  times with each execution reciuiring a finite 

number of steps.  The termination condition is that all basic variables 

are lexicographically greater than or equal to zero (all nonbasic vari- 

ables lexicographically equal to zero).  Thus by Theorem 1.1, the basic 

variables, and hence I lie solution to ( 1.17) are nonnegative over a 

finite positive interval. 

Q. K. I). 

From   the   above   results,    it   has   been   determined   that   a   finite1   number 

of  basis  changes  arc   required   to   solve   the   parametric   quadratic   program- 

ming   problem   for  a   finite   interval   of   the   parameter.      The   solution   to 

the   parametric   quadratic   program  need   not   be   piecewise   constant   as   it    is 

in   the   parametric   linear  programs.      For  each   interval   where   a   single 

basis   remains   optimal,    the   solution   will,    in   fnrt,    have   the   character- 

istic   form 
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q(t) w,z = 0 , 

where w and z are the complementary variables in their original form, 

and 2 and w are their complements.  q(t)  is nonnegative over the 

Interval and has the ^orm where each of its components solves some par- 

ticular N  order homogeneous constant coefficient linear differential 

equation.  When the value of some  q (t)  goes negative for some t, 

the basic variables w, z are no longer optimal, and a new set of basic 

variables must be found with the complementary property.  The new 

values of q (t)  are just linear combinations of the former components. 
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Chapter V 

GENERALIZED PROGRAMMING ALGORITHM FOR 
OPTIMAL CONTROL PROBLEMS 

The mathematical programming results obtclned in the previous two 

chapters are applied to the linear system, continuous-time optimal con- 

trol problems to formulate [9] a generalized linear program.  A solution 

procedure baser! on this formulation is then developed and is shown to 

terminate in an optimal solution, i.e., an optimal control is provided 

to the continuous-time problem. 

Formulation 

"he control problems will now be formulated as generalized programs 

and then the subproblems will be shown to be parametric programming prob- 

lems of the form presented in Chepter IV.  The control problem can be 

restated as 

min J = /  x 
u(-)   ^0 

x0(t) dt = x0(T) (5.1a) 

x(t) = Fx(t) + Gu(t) (5.1b> 

x e E ,    u e E ,    and 

x = e E 
n+1 

x{0) e S  ,    and    x(T) e S  , 

u(:) e U = (u|Au > b] ,   U c E  , 

F is an n x n real matrix, and 

G is an n X m real matrix. 
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x0(t) = fgXCt) + BgUCt) + h y |ui(t)| + u(t),Qu(t)   (5.1c) 

1=1 

where f.. is a fixed real n-vector and g  is a fixed real m-vector, 

h is a real constant, and Q is an n X n real matrix. 

We will first consider strictly linear cost functioimls, i.e., 

h = 0,  Q = 0. 

Letting 

F = and 

G = 

S' 

(5.2) 

the completely linear system can be expressed by 

x(t) = Fx(t) + Gu(t) . (5.3) 

When a particular vector function u (t)  and an initial condition 
_i 
x  (0)     are given,   the  solution  to  (5.3),   at     t  = T,      is 

-/^s TF 
x(T)   = e       x ̂ 0)   +    f (T-t)F - i, + ,    _ 

e Gu  (t)   dt   , (5. 4a) 

and the solution to (5.lb) is 

TF 
x(T) = e  x 

T 
^0) + f    e(T"t)F Gu^t) dt . (5.4b) 

Jo 

56 

.. ^rT^'~.'i.'.''j.zz^i.-.-—L..^JW^ w^^.. 



F        rn 
The  sot    S    c E       Is  defined 

F TV 
S0=  (y|x e   S0(y = e1*  x]   , 

If S0 is a convex set,  S  is also a convex set by the linear mapping. 

The set S   C E      can be defined by 

^ = ST - S0 ,   or 

<« = ^z|z = x - y, x e ST) y e Sn J . -1 
Proposition 5.1. If S  and S  are convex, then S    is convex. 

Proof of Proposition 5.1. 
1  2 F 12 

Let x , x  be points in S  and let y , y  be points in S ; 
112   2 T 

then x  ~ y ,  and x - y  are in S,     For all A,  0 < A < 1, 

A^-y1) + (l-A)(x2-y2) = Ax1 + (1-A) x2 - Ay1 - (1-A) y2 . 

1           2    F F 
Ax + (1-A) x  e S since S  is convex. 

1 2 
Ay    +   (1   -A)   y    e   S since    S       is convex. 

11 2    2 
Thus    A(x  -y )   +   (1-A)(x  -y )   e S, and  implies  that    i     is  convex. 

Q.E.D. 

Let  S  and S  be defined as 

S0 = < y € E 
n+1 

y0 = oiy . s0 

and 

sT = < y € E 
n+1 J0 

y 
y0 = O.y e S 

T {' 

-F 
the sets  S  and &     are similarly defined. 
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Using  the above  set  of definitions,   we  can  restate the  initial  and 

final  state constraints  of the fixed time control problems as 

x(0)   = 0  . x(/0^   ^ 0  • and 

x(T)   e A   . 

Thus, it can be assumed, without loss of generality, that the system 

initiates at the origin with no prior costs. 

1.  Control Problems Formulated as Generalized Programs 

If we take the vector functionals of the control  P = P[u(t)] 

to be defined by 

and 

P = |  eCT-^F Gu(t) dt j = 1 (5.5a) 

P = P[u(t)]     to be  defined  by 

P =   I      e(T"t)F Gu(t)   dt   , -L (5.5b) 

then,   let 

and 

J C = { P u(t)   e  U  , 

C = ' P 

"I 
U(t)     £    U 

: f\(T-t)F GUU) dtj 

■r ev       ;     Gu(t)   dt 

Proposition 5.2.  If U  is a convex set, the set C(C)  is convex. 

Proof of Proposition 5.2. 
1      2 

Let u (t),  u (t)  be vector functions in U,  for all  t,  and 
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p- = I  e^"*^ Gu1^) dt  e C ?1'f Jo 

P2 = F Gu2(t) dt  e C 

For all A,  0 < A < 1,  A = (1-A), 

AP1 + XP
2 = A r  e(T-t)F Gu^t) dt + Ä r e(T-t)F Gu2(t) dt l I 

-I e(T-t)F G[Aul(t) + 7,u
2
(t)] dt 

1     — 2 
Since U is convex,  Au (t) + Au (t) e U, Vt. 

Thus AP + AP e C.  and C is convex. 

Q.E.D. 

Remembering that ehe state at time 0  is assumed to be at the 

origin and using the definitions of P,  C,  and Eq. (5.4b), we find C 

is equivalent to R ,  the reachable set of U at time T.  The control 

problem is feasible,  iff 

ens * 0 . 

Given a specified control   function    u(t.),     the  cost  associated with  that 

control  is     J[u(t)],     since  the cost  at  time    t   = 0    is zero.     Note  that 

P = [';]' where p = J[u(t)] , 

when u(t)  is the control generating P by Eq. (5.5a).  Thus 
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c = < -  „n+1, - 
P e E   P 

"0 
P 

,  P = P(u) ,  p0 = J(a) ,  u(t) e U 

Note also that by using Proposition 5,2,  C  is convex. 

Let U' = (1,0,...,0)  and note that the first component of 

the vectors S,  in the set S,     is defined to be zero.  Also note that 

the first component of the P vector represents the cost of using the 

control (and its corresponding trajectory) generating P.  Thus we are 

looking for a vector P e C,  a vector function u(t)  generating P, 

and a vector Serf  to satisfy 

Ir 

_max_ A 
P e C 

H.v > 0 

subject to U0Ä + PM = Sv 

v = 1 , (5.6) 

where p  and v are sealers.  Maximizing A is equivalent to minimiz- 

ing J[u(t)],  the first component of the vector P,  ;vhere  u(t) gen- 

erates P.  Since  P must be taken from a convex set C and  S must 

be taken from a convex set S,     the above formulation is a generalized 

program of the Dantzig-Wolfe type.  In the following chapter we will 

show that an optimal solution to t'ne  control problem is an optimal solu- 

tion to the generalized programmi ig problem.  We will now show that any 

solution to the generalized programming problem is an optimal solution 

to the original control problem. 

A solution to the generalized programming problem consists of 

a vector P in the reachable set R .  a control function u(t)  in the 

admissible control region U generating P,  and a vector S  in the 

constraint set of terminal states S,      ,o  that 

P s   S   . 
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The above equality insures the transformation of the system from an 

initial point,  x(0) e S  to a final point x(T) e S  by the vector 

function u(t),  chosen from U.  Thus it is a feasible control.  By 

minimizing J over all feasible sets of P and S,  we can find a 

feasible solution with the least cost.  This is precisely an optimal 

solution to the continuous-time control problem. 

2.  Generalized Programming Subproblems as Parametric Programs 

To complete the generalized programming formulation, its sub- 

problem must be described.  Here we assume there are at least n + 2 

vectors P  and/or S  available to provide a feasible solution to 

(5.6), so that the problem 

max A , 
Mi v 

M.v > 0 

-2 -i     -J+l    .     . nJ+P U0A + P Ml + P M2 + ... + PJM  = S
J+  Vi + ... + 

Mi + M2 + • ■ • + Mj = 1 

vl + v2 + • • • + vp = 1 , (5.7) 

is solvable and has a dual solution vector 

n'   =  (V^-Vi-W ' 

where     n'   =  (n  ,. .., n ).     The  subproblem is   then  formulated  in  two  parts; 

S 

min    it' 0 
S   £   J 

1 
L-      J 

and (5.8) 

mm     7T' 
P e C 

(5.9) 
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The solution to (Ö.8) is dependent on the explicit definition of the set 

S   or J,     the simplest case being the fixed end point problem, which 

consists of a single element.  In this case, the subproblem (5.8) is 

trivial and need not be considered. If   S    is a convex polyhedral set, 

then (5.8) is a linear program that needs to be solved once for each 

Iteration of the master problem: 

Subproblem (5.9) can be described 

(5,10) 

P rTe(T-t)?Gu(t)   dt 
Jo 

min    it' 
P e C 

1 =    min    it' 
P e C 

1 

_0_ 0 

I' i 

Since the requirement P e C  is equivalent to the requirement u(t) e U 

for all  t,  (5.10) becomes 

min   it' 
u(t) e U 

since n    does not depend on t, 

r e(T-t)F Gu(t) dt 

min 
u(t) e U r (Tt0, rt') e(T"t)F Gu(t) dt 

or 

+ it 
n+1 

(5.11) 

The minimum of the int?irral is attained when the Integrand is minimized 

at every point.  Let 

/(t) = (TtQ.it') e(T"t)F G (5.12) 
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be an m-dimensional vector function.  Thus the subprobloro becomes 

»^•«•rtUlBÄ'/^S 

Find u(t) e U , 

so that 7(t)lu(t) 

t e[0,T] 

is a minimum (5.13) 

i 

I 

From (5.12), it is obvious that /(t)  has the property of each of its 
st 

components being a member of the class of solutions to an n + 1  order, 

homogenous, constant coefficient, linear differential equation.  Since 

our attention is restricted to those U that are polyhedral sets, (5.13) 

becomes 

min 7(t)'u(t) 

Au(t) > b 

t e[0,T] (5.14) 

(Note that the inequality may be reversed or an equality without loss of 

generality.)  Thus a solution u(t),  for the subproblem, can be obtained 

by using the parametric linear programming methods of Chapter IV. 

In a similar manner, we can formulate minimum fuel, minimum 

time, and quadratic loss in control problems as generalized programs.  It 

can also be shown that the minimum fuel and minimum time are special 

cases of the linear loss problems just described.  Since generalized pro- 

gramming can be applied to general convex programming problems, we can 

formulate optimal control problems with loss functions convex in the con- 

trol variable as generalized programs.  However, only the quadratic loss 

in the control case will be c1' cussed in detail, since this is (to the 

author's knowledge) the only general nonlinear convex loss function which 

has a known finite solution procedure for the parametric subproblem. Sep- 

arable piecewise linear (convex) functions of the control can also be 

formulated as a special case of the linear loss problem, although it will 

not be shown here. 
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The previous formulations can be generalized if we observe il. 

following general linear system control problem and use the notation 

given in Chapter II, 

min   J = /  x0(t) dt, 
u(t) e U   •'O 

where  x(t) = 

x0(t) 

x(t) 
e E n+1 and 

x(t) = K(t) + Gu(t) + f(u) U0 ,  (5.15) 

, linear loss 

where  f(u) =(£ |u.| , minimum fuel 

u'Qu  , quadratic loss , 

where Q is positive semidefinite,  u(t) e U,  t e[0,T],  x(0) G S , 

x(T) e S  ,  and  S ,  S  are convex sets in E .  We note that  J is 

a convex functional in u(t),  since u(t)  is a vector sequence drawn 

from a convex set U,  and f(u)  is a convex function in u.  Thus the 

solution to Eq. (5.15) can be noted as 

x(T) = e™  x(0) + C ^  ^   dt + Jl ^   f[U(t)] U0 dt • r 
(5.16) 

Now, we define P and P,  as before, by 

=r P =    |      e
F(T-t)   Gu(t)   dt   , and (5.17) 

P = 
P -L e^1-0   Gu(t)   dt  +   /      f[u(t)]   dt  U (    f[u( 

Jo 0   ' 
(5.18) 
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where U  is an n + l-dimenslonal unit vector with a one in the first 

component. Thus the second integral of (5.18) becomes 

1=1 

(t)|dt ,     minimum fuel , 

^0 
(t)1Qu(t) dt ,     quadratic loss 

i 

Also  as was done  before,   we can  now define    C    as 

C  =/ P e  E 
n+1 P = 

-A) 
e^-V   Gu(t)   dt 

z > J[u(t)]   ,     u(t)   e  U,     Vt1 

Thus the P,  as defined in (5.18), are members of C,  We also note 

that C is a convex set, since J[u(t)]  is a convex functional. 

The vectors S and set &     are defined as before.  Thus the 

general linear system control problem can be formulated as a generalized 

programming problem. 

Find P e C ,  S t J ,  to 

max A ,  p,v > 0 
P e C 

subject to U A + P|.i = Sy 

u = 1 

v = 1 (5.19) 

Again we note that the solution to the generalized program is 

one in which a vector P  is found so that the last n elements  P 

belong to the set S,     and, out of all possible vectors,  P t <$ ,  i.e., 
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feasible solutions to the control problem; the first component of P , 

taken to be the value of the loss functional, is minimal.  Thus the 

vector control function u (t) generating P is a solution to the 

optimal control problem. 

We now describe the subproblem corresponding to the minimum 

fuel and quadratic loss problems as in Eqs. (5.3) and (5.9>.  For the 

general case, following the similar reasoning given for the linear loss 

case, the subproblem to ehe restricted master problem becomes, (remember- 

ing that  rt = 1,  since  (U',0,0)   is a basis vector and 

U 
0 

0 

0 

= 1 ) 

min  l  /f[u 
u(-) A)  ( 

(t)] + (IT it')' e(T"t)F Gu(t) }dt + Tt  , .  (5.20) 
0 1      n+1 

Defining  /(t)  as before, (5.20) becomes 

min ^(t)'u(t) + f[u(t)] 
u(t) 

subject to u(t) e U ,  Vt . (5.21) 

For the quadratic loss problem, with U = (u|Au > b, u > 0] , 

(5.21) becomes a parametric quadratic programming problem in u(t) of 

the form discussed in Chapter IV [due to the form of /(t)]. 

We now look at the minimum fuel problem for two classes of U. 

The first class has the classical form of the minimal fuel problem, 

where 

U = H|u. (t)| < 1,  i = 1, . . . , m] , 

and  the  second  class   is a general   polyhedral     U. 
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I 

I 

For the first case, (5,21) has the following solution (the 

singular arcs, /(t) = 1 for an interval, are not discussed because no 

solution is defined), 

-1 < 7i(t) < 1  , u (t) = 0 

7i(t) < -1  , u (t) = 1 

71(t) > 1  , ul(t) = -1 

for all  i .                 (5.22) 

The magnitude of one as a bound for the control is noted to 

be nonrestrictive, since G can be scaled to permit other values.  The 

formulation can also be adapted to treat lower bounds on u (t)  with 

magnitudes that differ from the upper bounds.  These changes affoct the 

ranges of 7 (t) in (5.22),  Thus the subproblem -^r the standard mini- 

mum fuel problem has a well-defined solution, and its execution in re- 

lation to the master problem is proportionately as quick, regardless of 

the size of the control space. 

The minimum fuel problem for general polyhedral sets U has 

a subproblem equivalent to that of the linear loss case.  Following the 

same steps given above, the subproblem for general U which replaces 

(5.23) is 

I min 7(1)11(1) + /_.   Iu- 
u(-) i   I 

I 
(t) 

subject to 

Au(t) > b 

0 < t < T . (5.23) 

This is equivalent to a parametric linear programming problem of the 

type presented in Chapter IV when the variable u.(t),  which is un- 

restricted in sign, is replaced by the difference between two nonnega- 

tive variables, 
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u.(t) = u4(t) - u.(t) . (5.24) 
ill 

The constraints are replaced by 

Au - Au > b 

ü > 0 

u > 0 . (5.25) 

Since linear programming algorithms consider only basic solutions,  u 

and  u  cannot be basic at the same time because their columns A  and 

-A ,  respectively, are linearly dependent.  Thus for every i,  either 

u. t," u.  must be at level zero.  Using this result,  |u.(t)|  can be 
ii ' i  ' 

replaced by 

u.(t) I = u.(t) + u.(t) , (5.26) 
i   '    i      i 

and the equivalent parametric linear program is 

min  ) [/.(t) + 1] u.(t) + >  [-7.(1) + 1] u.(t) 
u,u 

subject to An(t) - Au(t) > b 

ü. (t), u.(t) > 0 
i     i   — 

for 0 < t < T . (5.21) 

Since a generalized programming formulation Is shown to bn  used 

for finding a feasible solution to the linear system control problems, 

the minimal time problem can be solved with these methods.  The subprob- 

lem to the generalized programming problem for feasible solutions is also 

shown to be a parametric linear programming problem of the type discussed. 

Here we will present a solution procedure (similar to the one proposed 
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by Ho   [11])to the minimal  time problem that  is equivalent  to finding, 

if  it exists,   a  feasible  solution  to the generalized  programming  form- 

ulation of linear systems and,   of  course,   to determining whether or not 

a   feasible solution exists. 

The minimal  time  problem can be stated as 

-t 
min    I 

u(-)   ^O 
dt =  t 

(t       is  free), 

where x(0)  is given and x(t ) = 0,  and 

x(t) = Fx(t) + Gu(t) 

x(t) e En,  u(t) e U c Em (5.28) 

Thus we wish to find  the  shortest   time  in which we  can  transfer  the state 

from a given point  to  the  origin  or,   equivalently,   to  find  the minimum 

time   for which a control     u(t)   t   U    exists  to  transfer  the  system from a 

given point to the origin.     The  latter statement   Is   the one related  to 

a  generalized  programming   formulation  of  the  minimal   time   problem.     De- 
TF 

fine     P    as  before,   for  any   fixed     T,     and     S  =  -e       x(0)    .     Let   the 

set   of all     P    be    C s   R   ,      I.e.,    the  reachable  set,   which   is convex. 

We want   to know whether 

for any  fixed    T   , (5.29) 

so   that  we  can   find   the  minimum    T     for which   (5.29)   holds.     Equiva- 

lently,   we want  to know whether a   solution exists   for 

Pi,  =   S 

P £  C =   RT  , for   any    T (5.30) 
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and again we want  to  find  the minimum    T    for whicn a  solution to  (5.30) 

exists.     The  solution procedure  for  (5.30)   for any    T,     will be  discussed 

later.     At  this  point,   we will  solve  the minimum time problem by choosing 

a    T,     and  try to solve  (5.30).     If a  solution exists,   decrease    T    and 

proceed;   if one does not exist  then increase    T    and proceed.     If the 

increments  for the  increase  and decrease of    T    are chosen wisely,   this 

procedure will converge  to an answer  to the  minimum time problem. 

The  solution  to  (5.30)   is  a phase   I  generalized programming 

procedure  that   is  also used  to  find  initial   feasible solutions  to  the 

optinal  control  problems discussed here.     A   finite convergence procedure 

is  shown for phase   I  methods when its existence  is  known,   and a  test   for 

its existence will   be  presented   for control   problems  for which the  exis- 

tence of feasible  solutions  is not  assumed. 

To generalize  and summarize  the above  results,   the  following class 

of control  problems  may be   formulated as generalized programming problems: 

^O 
min    J =   /      f(x,u)   dt   , 
u(.) 

x  = Fx  + Gu, 

x(0)   t.   S     ,      x(T)   e   S     ,     u(t)   t   U   ,      0 <   t <  T   , (5.31) 

where S ,  S ,  and  U are convex, and 

f(x,u) = f1(x) + f2(u) 

where  f (x)  is linear in x and independent of u,  f9(u)  is convex 

in u and independent of x.  When S ,  S ,  and U are polyhedral 

sets and  f9(u)  is quadratic in u or the sum of the absolute value of 

the components (with linear terms permitted), the generalized program- 

ming problem is solvable by the methods presented in the previous two 

chapters.  The rest of this chapter is devoted to the development of the 

algorithm for solving these generalized programming problems and to 
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pointing out the specific features of the algorithm so that it can be 

adopted for special purposes, including the determination of feasibility 

or its existence. 

B.   Solution of the Control Problem 

The first step and, at times, the major problem in the solution of 

the control problem is to find an admissible control yielding a feasible 

solution.  An important characteristic of the generalized programming 

solution of optimal control problems is that, at every stage in the 

optimization phase, a feasible solution Is always available.  With this 

feasible solution, a bound on the value of the optimal objective func- 

tion can then be computed.  Thus, if the solution procedure is Inter- 

rupted before its convergence to an optimal solution, a feasible solution 

can be recovered and an estimate of how close it is to an optimal solu- 

tion provided.  This estimate or bound can be used to terminate the al- 

gorithm, since suboptimal solutions having an objective value close to 

the optimal one, are generally sufficient for decision purposes.  Al- 

though the general solution to the linear control problems may be an 

infinite convergent process, the generation of a feasible solution, if 

interior solutions exist, is a finite process, and the generation of a 

suboptimal solution, as close as desired in objec ive value to the op- 

timal, can also be obtained in a finite number ol steps.  The algorithm 

and its .ariants are presented in this section along with convergence 

and finlteness proofs.  The characteristics of solutions and their re- 

lations to known results in control theory are presented in Chapter VI. 

1.   Generation of a Feasible Solution 

There are two major aspects of finding a feasible solution. 

The first of these is the determination of whether or not a feasible 

solution exists; the second is to generate the feasible solution, if it 

does exist.  In both cases, a phase I procedure of the generalized pro- 

gramming problem is used.  The control problem to be considered is 

Find  a     ü(t)   e  U = (u e   E'IAU < b]   , Vt   , 
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such that  x(0) e S   and 

x(T) e S ,  when  x  is controlled by 

x(t) = Fx(t) + Gu(t) (5.32) 

Without loss of generality, we let  S 0 and S = S. 
T 

Let us assume that the reachable set  R  is a continuum.  Let 

us also assume that, if 

RT n ^ ^ 0 , 

then    R    H  i!     is  a continuum.     This condition  insures  the existence of 

a  finite-dimensional  neighborhood  in  that   set  of desired  final  states 

in  the reachable   set.     As will be  shown,   these conditions   imply   that  the 

phase  I portion  of  the  generalized programming  formulation of   the  control 

problem terminates with  a  feasible  solution in  a  finite number of 

of steps. 

Since   the convergence   (Chapter   III)   of  the  generalized   program 

assumes  that  a  nondegenerate   feasible  starting  solution  is  available, 

the phase   I  procedure  must  terminate with   such  a nondegenerate  feasible 

solution.     This   implies,   for  an  n-dimensional   state   space,    that   a   col- 

lection  of    n  +   1     vectors     P    must   be   jenerated   so   that   the   initial 

basis, 

„n+1 

is  nonsingular.     Also  a   value,     S   c  /i,     must  be   provided  so   that     13    S 

is  a  vector  and   is   strictly  positive   in  all  components. 

Although  convergence  proofs   require   the  results  of  the follow- 

ing phase   I  procedure,   more efficient variants   (to be  presented) should 

be used  in  practice and  can provide  a  feasible   solution  In   fewer steps 

for most  problems. 
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We will  now  show the procedure  for  finding a feasible  solution 
, n  . 

when o    is a  single point and a ball of radius p  in E  Ca p- 

neighborhood) is also contained in the reachable set,  R .  The p- 

neighborhood is used to avoid degeneracy problems, in much the same man- 

ner as a simplex lexicographic methods by perturbating the original right- 

hand side.  Thus we seek to generate a set of n + 1  vectors P ,  to 

provide a .'ondegenerate solution to the set of linear equations. 

PM+...+P     U    ,=S 

n. Mn+1 

u, + • ■ • + u ,, = 1 Hl        Mn+1 

M  > 0 , VI . (5.33) 

a.        Some   Properties  of Convex   Sets 

Definition  5.1.      The  convex  hull   of a   set,      X c E   >      is   the   intersection 

of all   convex   sets   in    E       containing     X. 

Definition  5.2.      The  convex  hu11     A      of  a   finite  set   of    n  +  1     points, 

x  ,   x   ,   ...,   x       ,      in     E       Is   an   n-dimensional   simplex,   if   the 
J. ^ IIT J. 

flat   of minimal   dimension  containing     A    has  dimension     n.      The 

points     x.      are  called  vertices. 

Lemma  5.1   [12].      If    A    is  an  n-dimensional   simplex  with  vertices 

x   (1   =  1,    ...,   n  +   1),      then    .      consists   of  all   points     x   t   E 
i 

for which  constants    0'      exist,   so   that 
i 

n+1 

x   =   I   0ixi   , V r>    = i 
i 

i=l 
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Definition  5.3.     A set of    k + 1     points in    E"    is geometrically in- 

dependent,   if no    (k-1)-dimensional hyperplane contains all the 

points. 

Definition 5.4.     A set    (x  ,   x  ,   ...,   x ]     of vectors  in    E"     is point- 

wise   independent  (algebraic  counterpart of geometrically  indepen- 

dent) ,   if the k vectors,     x     - x  ,     x 

linearly independent. 

xo xk -xo   are 

Lemma 5.2   [13].      If    X = (x  ,   x    x }     is a pointwise  independent 
' ■    '   ■ U i K 

set In E ,  then there exists a unique k-dimensional hyperplane 
k k 

H  containing X having the property that x e H ,  iff 

- - I Vi -        1 ai 1 , 

1=0 i=0 

where   the    O.     are unique.     The    Of.   are  the barycentric coordi- 

nates of    x    with respect  to    X. 

Let  us  look  at   the  convex hull of the  set  of    n + 1 

points  in    E",     X, 

X  =  (x0>    k^ x  ]   , wh3re 

X0   = 

0 

0 

X2   = x     = 
n 

0 

0 

and denote  it   by convX.     These  points  are  pointwise   independent,   thus 

their convex hull  is a simplex. 

74 



**mw{mmm i umiwwwpwwwppp—»niMwuwiiniwi^Mwiiwiim.iiJLi mi ■! <IIIIIIHM!FIW,IIII Hniiiwipii^jw»ijwniiiiiwwiwffiwnpw»uiiwii.ipwwiiiwpyi'w^ 

1 

Let 

M ';■■■•: ■-• I ..■'■ '. mvnrm    ■'\!-\ 

X       = 

1 
n+] 

1 
n+1 

thus x*e convX,  since the barycentric coordinates are a = 1/n+l, Vi. 

Also since a. > 0, VI, x* Is In the Interior of convX, 

Define a new set of points, 

X' = fx'  x' •   x'] , n 

where  x1 = x + Ax . 
1   i    i ' 

x, is as before,     and 

I^JI   < 
(n+1)' 

Lemma 5-3-  The Points x!  are pointwlse Independent. 

Proof of Lemma 5. 3. 

Let     x^ = x.  + ^.   - %)      J   =  i, . ,   n.    Assume  that   the    x'.'     are 

linearly  dependent.     Then a   nontrlvial   set  of    A.     c-xists,   so   tha^ 

Thus, 

y A x" =  0 

1 VJ= 1 AJCXJ -^ -^0] =0 

75 

---    - -■ "-^  if ■infciiiiiiMt/<fiii II  i riii—^—^^.   



iii^wiwiBpiwpiiiiiiiiiuMMWMMifwwiiw." ■■I"«™ wmimm '  "          ^ 

■ 

and 

1 Aj[% - ^ = Iv (5.34) 

Taking the vector inner product of both sides of (5.34) with V 

[l\^\-\ and 

V   A.(Ax.   - ZÄ.)'   x,   <   YAT— Z   J   o      j     k    z j[(n. +1)' 

since 

^jxk < il^jll   ■   llxkll  < 
(n+1) 

Thus we have 

lh (n+1)' 
> A, (5.35) 

If we  take   inner   products with  all  the     x.,   j=l,   ...,   n,     and  sum the 

left- and right-hand  sides  of  the  result   (5.35),   we obtain 

f   k       f  LZ  J   (n+l) 
y A 

(n+1)2    '-'      J 

J 
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which implies  1 < 2n/(n+l) ,  which is a contradiction for n > 0. 

Thus the \ 

dependent. 

Thus the vectors x'.  are pointwise independent or geometrically in- 

Q.E.D. 

Theorem 5.1.  ""he point x  is in the interior of convX' 

Proof of Theorem ö.1. 

ConvX' forms a simplex, since the points x'  are pointwise in- 

dependent and form an n-dimensional hyperplane.  Thus 

* -1 Vl and 

i=0 

Y 0". = 1 (5. :5) 

has a unique solution in the Of' , 
i 

We must now show that Q'. > 0, Vi.  Notice that 

) —- x. = x  =  > 0".x'. , 
ZL n+1  i        ZL i 1 
1=0 

or 

n 

Y Ot'.x'   - J- x L o 
£_,        i i  n+1  ij 
1=0 

(5.37) 

Since     x'.   = x.   +  Ax. ,      (5.37)   becomes 
ii i 

I 
i=0 

a'  - n   ,    x.   +  O'.Ax n+1 /      i ii (5.38) 
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By taking the inner product of (5.38) with each x., i 

cessfully, we get the set of equations, 

1, n suc- 

or, in general 

Since 

a'l-lkl+l   al{**'i'   Xl> =0 
i=0 

a 
2  n+1 

lr+ ^ a;(z*;, x2> = 

i=0 

a1 

n 
Ar + Y «'(Ax'  X ) = 
n+1   Zl,  i  i  n 

i=0 

a' 
n+1 " Z a^ZÄ', x >, j .,  * * • f 

i=0 

(Ax!, x.) < 
a   1 

(n+1)' 
2  ' 

a' > — 
i  n+1 

(n+l)' 
1   "'i (n+1) 
i=0 

(n+1) 

Thus a' > 0  for  i = 1, . . . , n.  Now, 
i 

l^-l 
i=0 

and we take the vector product of (5.38) with 1  to get 
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if; 
1=1 x 

n+1 
y «'(/^^ i) = 0 

1=0 

which   Implies   by using 

I 
1=1 

a-  = 1 - a>   , and 

n 

Z,   n+l 
1=1 

1  - 
n+l 

that 

1   - O' 1  + —- + 
n+l /,     1        1    — 

1=0 

0   , or 

= ^7 +   ^    "'.(-x!,   1) 
n+l        /.      i        i    — 

1=0 

Rcmembcrlnp;   that |zj{.||   <  l/(n+l)        and     ||1||   =s'n,     we   obtain 

n 

a-  - -i ^ V   o-   = ^ ^L_ 
0       n+1       (n+l)2   -      i       n+1       (n+l)

2 

1=0 

Thus n" > 0,  and x  is in the interior of conv.X'. 

Q.E 

By using the assumption that a . -neighborhood nliout 

S = X   is also in P. ,  the following set of points are found in  H T T D       ■ 'i 
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x   =/x - JL/^\    ! 
p       (   T    n+1 \ n+1 /    - 

+ -^r e  ,   1=0,   1, n+1    i' '     ' "}■ 

where     e  ,   1=1,   ...,   n     Is  an n-dlmensional  unit vector with a one  In 
th 

the  1       row and    e       is  the null  vector.     Geometrically,     X      defines 
p '0 

the vertices of an n-dimenslonal simplex with X  defined by the bary- 

centric coordinates of l/(n+l),  for each point in X . 
P 

Let  X. = X - J-/^ 
T  n+ 

1 ; P \ 1  _£_ 
+l\n+l/ - + n+1 ei ' 

Vi 

Proposition 5.6.  Let a ball of radius [p/(n+l)][l/(n+l) ] ,  about X. 

for any 1,  be N ,  then 

N. C R„, ■ 1 - T 

Proof of Proposition 5,6, 

X.   -  Xm = 
1 T 

1     /   P    \    1  + _£_ e 
n+1  \n+1 /   -      n+1     1 

x,  - *„ <  ||J_(J^)   !   ||   +  11   P.e   || 
- "n+l \ n+1  /   - n       ''n+l     i" 

Y Y  II  ^       1/p\/TrJ.P P    /vn+n+l\ 

The maximum distance   from any  point   in    N       to    X.     is    -—■         , J i      1     n+1  n+1  ' 
thus the maximum distance from any point in N   to X   is  ri, } i      T 

2 
d<^T (^l) +-^[pH^+n+l] ,  or 

(n+1) 

d < p d?^) + n+^ 
which is less than p  for n 

hood  about X  is in R . 
T T 

1.  Thus N c RTi  since a p-neighbor- 

Q.E.D. 
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X  £ X : 
i   P 

We will now solve the following problems, for all 

b.   Solution Procedure for Feasible Solution to a 
Generalized Program 

Find a vector  P  (or a convex combination of vectors), 

so  that 

w < 
n+ 1 (n+l) 

w = S  yI 
+ + v 

i=l i=l 

DM + iy   - Iy   = x
i 

u = 1 

M.yi- y, >o P t  c (5,39) 

This is the phase I procedure of a generalized program.  The columns 

P  can now be generated to ihe master program (a linear program), 

mm w 
i..y 

' y. + ' v 

1=1     i=l 

1 k      +    - 
P |i, + . . . + P (,, + Iv  - Iv  = X i K   ' i 

"1 + ••• + 'k 
= 1 

'V yi' yi -0 (5.40) 
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—k       th 
From the vector of dual variables it ,  the k  iteration of the general- 

k+1 
ized program (5. 40) generates a new column P  ,  by -neans of the sub- 

problem, 

min  —k ' 
Pec" 

(5.41) 

k+1 
This subproblem  is equivalent  to finding  a vector  function     u       (t)   that 

k1     F(T-t) 
minimizes    ir      e Gu(t) 

subject  to    u(t)   e U  , 

—k1 

where    it 
k'        k 

'r   - Vi (5.42) 

The problem  (5.42)   for polyhedral    U    has  previously been shown  to be 

a  parametric   linear  programming problem and  is  solvable by the methods 

introduced  in Chapter  IV. 

The  generation of    P from    u       (t)     is 

,k+l -£ F(T-t)   „  k+1,   x    , 
e Gu        (t)   dt   . 

The generalized program (5.39) terminates when 

2 

»k< -MJ-V 
n+l) \n+iy 

for some iteration  k  of (5.40).  We know that the minimum value of 

w  for all  P € C  is zero, since X, u R ,  and 
i   T 

i* 
P  = X, t C . 

i 
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Therefore 
i* + - P     M  +   ly     -   ly     =  X. 

i 

=  1 

M>   Y-i   Y-  > 0,   has  a   solution  with all     y.,   y.   =  0.     The   terminating 

condition  for  each  part   of  the  phase   I   procedure   terminates a  general- 

ized program at a  saboptimal  solution with  the objective value  some 

specified distance   from its optimal value.     Thus   the  generalized program 

terminates  in  a   finite number of steps. 

Once   the value  of    w    becomes  low enough,   the  solution  to 

the  phase   I   procedure   for  each    X      must  be   recovered.      From   the   final 
i 

solution, for each X,  phase, let 

1   ^N u (t) =  > u*(t)u.    and 

i=l 

k 
i * 

P   = >  P p. 

for each    i   =0,   1,    .   .,   n.     Also note   that 

k 

i i      0 
i=l i=l 

~n   GCuV)]   dt   ,, 
i 

L 
!      F(T-t)   „   i* , 

e Gu     (t)   dt 

i * i ■>■ 
Proposition 5.7.  The set of vpctors  P   and controls  u  (t)  con- 

stitute a nondegenerato ionsiblc solution to the set of equations, 

8 3 
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0*     1* „n* 
P M0+ P ^ + ... + P Mn =XT 

^0 + Ml + ... + = 1 

Mi > 0 ,  Vi (5.43) 

Proof of Proposition 5.7. 

The points X.  can be transformed and scaled to the points. 

xo = 

0 

0 

xl= 

L0J 

x„ = .  x = 
n 

and X  can be scaled to 

1 (^) ^ - *' 
r,y the same transformation,  P   can be replaced by 

x', = x . + Z^c. , 
i   i    i 

where 

Ax.  < .  , 1  i"   \n+l 

Thus the results of Theorem 5.1 hold and 

x* = ^ C,;xi 
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a   > o ,    Vi , 

and by retransforming and rescaling,  p. = Of'. > 0,  Vi  for (5.43). 

Q.E.D. 

c.        Application  to Control   Problems 

The   above  procedure   may  be   used   to  initiate   the   optimum 

control   problem when   feasibility  is   known.      However,   in   cases  where  the 

existence  of  a   feasible  solution   is   not   known,   another  phase   I   procedure 

can  be  used.      This   procedure  will   determine   feasibility  and   in  the   pro- 

cess   provide   an   initial   feasible  solution. 

For   the   fixed  end  point   problem,   a   solution  with     w  = 0 

to  the   generalized   program. 

n n 
min              V" +       \~      - 

w  =    > v    +     >     v 
M.y         <_. i     Z-    i 

i=l i=l 

P,   +   Iy+  +   ly"   =   S 

y*. y: l 0 

P  c   C   , (5. 44^ 

implies   that   a   vector     P  ^  C     exists  which   provides  n   feasible   solution 

to   the  control   problem.      If  the  optimal   solution   to  (5.44)   has   a   value 

of    w    > 0,      a   feasible  solution does  not   exist   to   1 he  control   problem. 

Theorem  5.2.      If  at,   any  stage     k     in   the   solution  of  (5.44),    the   value 
k k 

of    w     +   c    "0,      the original   control   problem  is   infeasible,   where 

b       is   the objective  value  of   the   subproblom  to   the  generalized 

program   (5.44). 
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Proof of Theorem 5.2. 
th 

Consider the master program at the k  stage, as; max A 

-1 
subject  to  U0A + P ii1 + PkM. + iy+ - iy - Sv = o 

^1 + 

7i' yi' ^i - 0 ■ 
(5.45) 

where 

P1^ 

1   1 -1  -1 -1 

Thus Ak = -w  and the dual variable to (5.45) is 

-k'   / k  k'   k    k  \ 

By using the duality theorem of linear programming and the dual to (5.45), 

Also 

, k   k     k 
n+1    n+2 

k   min  k' 
0 = P . C * 

0 

P 

1 

0 

min  k'    k 
:P . C ^ P + ^n+l 
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Since  S  is always in the basis of (5.45) 

-k' 
n 0    implies 

n     (-S) = -n . (5.46) 

By hypothesis, 

„ ^  ,k k mm       k1 k k 
0<b+w= TTP +  jt^+w, or 

P  £  C n+1 ' 

n^Rk k^k' k k 
0<Ö      -W      <JT      P+IT      J+W 

-       n+1 

for any P e C . 

Since  w = 
T,k    k     k 

0<b +w <  n  P -  K     „, 
—       n+2 and by (5.46) 

„   k   k   k'     k' 
0 < o + w < n     P -   n     S or 

0 < c1' + wk < IT
k'(P-S) for all  P . 

whicii implies that 

Thus,    for  any     P t   C   , 

0 <   n     (P-S)   , 

^  ^  0 and 

P  -  S ^ 0 for all     P. 
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Thus  there  is  no  admissible control   function    u(t)     which can generate 

a  feasible  solution  to the control  problem. 

Q. E.D. 

However, if at any iteration k, w =0,  the current 

solution is a feasible solution to the control problem and phase II 

(the optimization phase) of the generalized program can be initiated. 

Since this phase I procedure, unlike the previous one, is not necessar- 

ily a finite process, the optimization phase may begin when w < t,     some 

small positive number and the desired final point not precisely attained. 

For any practical control problem, when feasibility is not known, a point 

at some arbitrarily small distance away from a determined fixed point 

would be an acceptable terminal point for the control problem.  Thus, 

the phase I procedure would be finite even when feasibility is not 

assumed. 

For the variable end point problem, phase I procedures 

are much simpler.  For example, when the desired final region S    is 

constrained to lie in some r~neighborhood about a determined point  S, 

the phase I procedures outlined previously are used  (r < p).  If fea- 

sibility is assumed, a series of reachable points in the r-neighborhood 

should be chosen, and a phase I procedure identical to the first one 

discussed in this paper would provide a nondegenerate feasible solution. 

If a nondegenerate solution is not necessary, then a procedure identical 

to that for finding the existence of a feasible solution can be used. 

In this case  S  is allowed to be the right-hand side of (5.44) and the 

algorithm is terminated when w < r,  as the following theorem points out. 

Theorem 5.3.  If w  : r,  then the solution  P  to (5.44) at stage  k, 

which produces the value w ,  is a vector which lies in an r-neighbor- 

hood about  S,  and it is a feasible solution for the control problem. 
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Proof of Theorem 5.3. 

Since     w <  r, 

i=l 1=1 1=1 

(P.   -  S.)|   <  r 
1 1    !    - 

thus 

N 
i=i 

^    +     /(P+   -  S.)2 <  r, 
i i       - 

and 

iP*   -   Sl V(p (P:    S.) 
i-i 

<  V \K s.) 
i 

<  r 

Q.E.D. 

A general phase I procedure for the variable end point 

problem can be used to determine feasibiliiy as well as to find a fea- 

sible solution when it exists.  U'e consider the problem 

m i n = v v
+ + \ 

i=l 
^ yi 
i=l 

subject to 

P,, + ly  - ly + S. = 0 

U =  0 

:    =   1 

P t c 

s t ^ , or equivalently, (5.'17) 
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a  res tricted  master problem at  iteration    k, 

max A 

U0A + I   '\ -   1 ^J + Ty+ " ' 
1=1 

- iy = o 

j=i 

1H 
i=l 

k 

=  1 

,.,  v,, y^ yT >o and P,   S,   I,   I     are  as   before   .      (5.48) 

When   a   solution   to   (5.48)   produces   a  value  of    A     = 0     or  equivalently 

w    =  0,      the   solution   is  a   feasible   solution  to  the  control   problem. 

The   following  two  theorems will   prove useful   for determining when a  fea- 

sible  solution does not exist  and   for  recovering a  feasible   solution 

(when   it   does exist)   from a  particular  iteration of the  master  problem 

(5.48).      Let   the   subproblem of   (5.48)   be  designated  by   the   parameters, 

k k 6      and     A  ,      and  defined   by 

min    -k' 
P €  C   : 

0 

P 

1 

0 

and (5. 49) 

k min     -k' 

0 

s 
0 

1 

(5.50) 

—k where n        is the dual variable to (5.48) 
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Theorem 5.4.  If at any stage  k  of the initial phase procedure for the 
k   k   k 

variable end point problem w +5 + A > 0,  the original control 

problem is infeaslble. 

Proof of Theorem 5.4. 
 1^'      /   K       k' k             k        \ 

Letting     it     =(rt,Tt     , it     ^ .    IT     „)     and  remembering   from   the 
V   0 n+1       n+2  / 

duality   theorem,   that 

k ^k 
w     =   -A     = 

n+1 n+2 

then,    by  hypothesis. 

0  <   b     +  L    +  w 

0 0 

min 
e  C 

-k' 
;r 

p 

1 

0 

min    -k' 
+ S , A   " 

-s 
0 

1 

Ei  ■   I i luting   in   the  above, 

k k k       -k' 
0   <    O      +   :'.     +   w      <    ■' 

"n+1 n+2 

for  all     P c  C     and    S  t   A 

1'luis 

0 < 
k k' k'        , k k 

+   w    <    ■,     P  +   :■.      (-S)   +   ::     ,   +   fi     ., 
— n+1 n+2 'n + 1 'in-2 

or 

0 <   -,     (P-S)   , 
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which  implies   that 

/ ^ 0 and 

(P-S)   ^  0 for  all     P  e   C     and     Sei? 

Therefore,   there is no feasible  solution to the  control   problem. 

Q.E.D. 

Theorem  5.4   indicates  an  infeasibility  condition,   and   in 

the  next   theorem  (Theorem  5.5)   a   feasibility condition   is   presented. 

Theorem  5.5.      If at   any   iteration     k     the  solution   to   (5.48)   provides 

a  vector. 

k *       V      i  k 
s = Z s vi 

k * 
and a value w < r  so that  S   is an interior point in ^  and has 

an i—neighborhood surrounding S  that is also in A ,  the original con- 

trol problem is feasible and the solution 

'+ = >' .Ak 

i=l 

[ i   l)o i ng a sol ut i on t o 

(5.1«)] 

is a feasible, reachable point 

Proof of Theorem 5.5. 

Since w < r,     the vector. 

V  pVk 

i=l 

92 

-—-" ->-■':■ ---—'—  ^ggjgjllll^ljj^!,)),!,!^!,,^,!^^^^ , -mnijii,!',,!!! 



wm*    immmmmm   m 'i—   '■■ -,!■ i»«»»miJ—.tB.iK«|liM»ilii|iiHf—W^JWWWPIWPWIPIB 

has  tlie   property 

IP     -   S ^    (Pj  -   S*)2    <   ^   +J (P*  -  S*)2  = w
k < 

Thus the point  P  is in an r-neighborhood about  S  implying that 

P    a  S.     Hence the control generating P  is a feasible control. 

Q.E.D. 

2.        Generation  of  an   Optimal   Solution 

For  the   fixed  end   point   problem,   the   subproblem   for  phase   I 

methods   is  a   parametric   linear  program of  the  type   discussed  in Chapter 

IV.      For  some  variable  end   point   problems,   the   phase   I   procedure  has  an 

added  subproblem. 

0 

mm 
S   t  A 

nun 
S   c   A 

k' 
(5.51) 

Thus  we   sock   a  vector     S     in  a   specified  set    A     that   minimizes  the   s um 

V   :k( s   ) 
i i 

subject   to  the  constraint   that     S  t   A.      If    S     Is   a   convex   polyhedral 

set,    this   problem   is  a   linear  program   that   must   be   solved   once   for each 

iteration  of   the  master  problem.      For  other  classes   of    S,      the  sub- 

problem  depends  on   the  definition   of   A. 
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While discussing the optimization phase of the generalized 

programming formulation of the optimal control problem, we will con- 

sider only the fixed end point problem. 

To avoid degeneracy, it is desirable to start the optimization 

phase with a set of  n + 1  vectors  P  that provide a nonsingular 

basis, 

u   P1  p2  ...   Pn+1' 

B = 

which  is   feasible   for   the   program, 

max A , -v       T:1 ^n+1 — 
u U„A +  P u,+.,.+  P      u      ,   =  S 

u-     * , 0 1 n+1- subject to 

+   . . .   + 
%+l   =  1 

where 
r 

o , 

f(x, u  )   dt 

(5.52) 

whore    u   (t)   c   U    generates   the   vector,      P  ,      nncl 

0 

S_ 

These vectors are immediately available when using the phase 

procedure discussed initially.  For other phase I procedures, once a 

feasible solution is found and assuming a neighborhood about that solu- 

tion is also feasible, the initial phase 1 procedure may be used by 

generating the right-hand sides in a similar manner about the known 

feasible solut ion. 
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Restating   the   fixed end  point   optimal  control   problem  as 

x  = Fx  +  Gu 

x(0)   = 0,   x(T)   =  S 

x   e   En   ,     u(t)   e   U c E1"   .      Vt   , 

where U  = [ulAu >   b] 

and 

,   N     J =    /      fvx, u)   d u (') L 
t   , 

where V + Eöu 

fCx.u)   =   / f'x  +  g' u  +     >     Iu. I 
\    0 0 zl        i1 

i=l 

f'x  +  g^u  +   u'Qu 

we  can  define     F     and     G,      as  boforn. 

When   a   set   of  vector  control   functions     u   (t)     is  ^iven   from 

the   phase   I   procedure,    the  vectors     P       must   be  generated. 

or 

P1   = 

f     (f 
Jo       0 x   +   K'U)   dt   + l(u)   dt 

■'o r 

V--..    I       e1-^"1'"0   öu(l)   dt '-i 
.  1 

+     /       f(u )  dt  r 

Ft 
Since  tlio  matrix     e must   be  provided   for   the   phase   I   method,    the 

matrix, 
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Ft 
is  easily   shown  to   be 

Ft 

0 
^Ft 

0 

0 
Ft 

e 

by considering   the   system 

x   (t)    =   JQX X   C   E 

x   (t)   =  Fx 

.   . F(l-T)      ,   , . 
where     x(t)   =  e x( 0,      and 

x0(t)   =  f^x(t)   =   fQCF(t    0   x(T)   . 

Letting    x 

x(t) 

0 

x 

F(t--t)   -.   , 
c x{ l) 

.,   F(t-i) 
foe 

F(l-I) 

x0(0 

x( i) 

From   (5.52)   wc  see   lhat   the   linear  equations   in     ; always 

insure   lhat   a   feasible   solution  exists   for   tlie  control   problem,      The 

simplex  method,   when   applied   1(    the   master  problem,   maintains   primal 

feasibility  at   all   times  even  when   augmenting   the   linear  equations  with 
—k+1 

a  vector     P        .      Thus   at   any   time   in   the   execution   of   the   optimization 

phase,   a   feasible   solution   is  available   from   the  current   basis.      Also 

as  will   be  shown,   a   bound  on   the  optimal   solution   is  provided   at   each 

stage. 
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k    k k 
In the following let  J = -A ,  where A  is the objective 

th 
value of the master problem in the k   iteration. 

th 
Theorem 5.6.  During any k  iteration of the optimization phase of the 

*• 
generalized program, the optimal value of the cost function  J(u ) 

satisfies the following inequalities [2]: 

k,~.   Lk   , *    k.^.    k   ,k 
J (u) + b < J(u ) < J (u) < J = -A , (5.53) 

where 

u(t) V   1 
(t) 

i=l 

Proof of Theorem  5.6. 

Consider  the  equivalent   linear  program,   as  before, 

max A 
P 

V   +  ^1   +?2'2   +   •••+^k   "   SV   =  0 

"1  +       ^2  +   '•• +    ^k 
= 1 

The solution to (5.54) is A  and by the dual theorem. 

, k   k     k 
A  = r   +   :' 

n+1   n+2 

where n 
-k' 

(5.54) 

/ k   ';'   k    k  \ 
TT   /" , it   , it     is the dual variable to (5.54).  Since 

* U       n+i  tv* ä / 

it = 1,  the subproblem has ehe solution. 

min  J ,, s  k'     k  I 
u(t) t U j n+1 | 
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Thus  for   the  value    u  , 

or 

k * k'   * k , 
6   < J(u )   +  Jt     P    +  Jtn+1  ,       and 

kkkk * k'*k k k 
Ak +   5k  = Jk +   5k < J(u  )   +  rr-   P    + TTn+1   -  nn+i   -  rt^ 

k       .k   ^   T/   \ k'   *      „k 
J    +  5    < J(u  )   +  n    P    -n n+2 

Since 

-k' 
it 

0 

-S 

0 

1 

k' k n -it     S  +   itn+2  = 0  . 

Jk +   bk <  J(u*)   +   itk'(P*  -  S) 

If u*     is   the   optimal     u,      then     P       is   feasible   and     P     =  S.     Thus, 

jk + ük < J(U*) < Jk(G), 
.k/Av 

where     J   (u) 

is   the   current   solution   and     u     is  a   feasible   control,    and   the   right- 

hand   inequality   follows   immediately   since     J(u  )      is   the   minimum cost. 

Since     J(u)      is  convex   in     u, 

J   (u)   <  J =   1   ^V1^11 

i=l 

Therefore 

Jk(u)   +   ok < Jk  +   ük < J(u )  < Jk(G)   <  J 
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Q.E.D. 
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k       k      k     * 
Corollary 5.1.  When 5=0,  J (u) = J = J(u ), 

Proof of Corollary 5.1. 

The proof follows from (5.55), since equality holds throughout. 

Q.E.D. 

Note  that  the value,     A  ,     of  the  master problem is  an  approximation  to 

the current  solution at  iteration    k.     At any stage,   the   solution de- 

fined  by 

u(t)   =   S   |iV(t) 
i=l 

has  a  cost    J(u)     which by convexity  is  smaller than    J   . 

Although     5      does not  necessarily increase monotonically  to 

0,     it   does  so  for a  subsequence  of    k.     Thus  the  best  bound  from pre- 

vious   iterations  should be retained until  a  better  bound   is  attained. 

The  current  value   (at  iteration     k    of  the  generalized  program)   of  5 

may  be  used   to  provide  a  stopping  condition   for  termination  of  the   op- 

timization   phase.      By observing   the  value 

k.k 
o /J     , 

we can determine the maximum percentage by which the objective function 

can decrease for the optimal solution, and we are assured that the cur- 

rent solution is feasible to the original control problem. 

We now present a flow chart of the generalized programming 

solution to the optimal control problem.  We will use the fixed end 

point problem for an example, assume a  u-neighborhood about  S  is in 

R ,  and apply the long form of the phase I procedure. 
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© 

„  ,     ,   ^ F(T-t) .       F(T-t) 
Calculate    e and    e 

(as  real matrices with  elements being  functions 

of    t.)   or have matrices available 

I 
| Initiate phase I 

© s = S - -i- -^ 1 + ? e., i = 0, 1, 
i      n+1 n+1 -  2  i 

© 

© 
Set i = 0 

Replace  i  by  i + 1 

© 

Set  k = 0 -^■ 

Replace k  by k + 1 FROM SUB. PROB. 

nin w   \" +   \ - 

Subject to P1Ml + ... + P M + ly - ly 

= 1 

V v yi>0 

SL is     w < (n+1) 
(-)2 

NO 

© 
—k Calculate     it   ,      dual   variable  to 

litear  program 

-iil 
YES 

I  
f    TO  START OF  SUBPROBLEM 

lYES 

GO TO OPTIMIZATION   (BLOCK 8) 

GENERALIZED  PROGRAMMING  ALGüHITHM FOR  LINEAR 

OPTIMAL CONTROL. 
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OPTIMIZATION 

Let     P1  =   y   P^1 

u^t) = s ud
M; 

A—^ J 

j 

and 

th 
from    i       problem 

for all     1=0,   1,   . ,,,   n 

phase   II 

Set    k  = n 

© 

© 

i i,   s ,       F(T-t) 
Calculate     p       from     u   (t)     and    e 

for     1=0,   1,    ...,   n 

FROM SUB 
| Replace    k    by    k -t- 1 

max A 

M 

0 1 k „ 
Subject   to    A +  pofjo +  poiil  +   ...   +  P0pk  =  0 

pVpV--- + pVs 

M0  +       Mi   +   ••■   +       Mk  =  1 

|j.   >  0        i   = 0,    1     k 

—k 
Calculate  n     - dual   to   linear  program 

TO  SUBPROBLEM 
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Is Phase = I ? 

r YES NO 

F = F, f(u) = 0 

G* = G.S =0 

1° 
f(u) = u'Qu 

Vlu, 

_  *  _ 
F * = F, G  = G, 

Find     u  (t) 

*■ 

min  n       e     U      '   G  u(t)   +  f(u) 

Subject  to         Au >  b 

t  £[0,   T] 

' 

Po   e 

Lpk+1 . 

T       *                                                  T 
=          e                 G u(t)   dt  +   /     f(u )   dt  U 

YES   Is  0 = 0 ?    NO 

Go To 

Blockf <0 
© 

NO 
Is b > 0 ? 

Is  b 
< t 

speci f led e ',» 

NOj 

Go To 

(to) 

-k' k+1 

-k+1 

YES 

1 
u (t) = arg, ^  P Uj 

is optimal solution 

YES 
r STOP 

SUBPROBLEM 
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The   inputs  to  the   flow chart  are, 

System matrices    F,   G 

Loss  functions,      f(x,u)   = f  (x,u)   +  f(u) 

where       f (x,u)   =  f'x + g'u 

Parameter,    p. 

Final time  T  [assuming initial time  0] 

F! 
[0r     ST-So] Final  state     S       or     S     -  S„ 

T   0, 

Polyhedral matrix,  A 

Right-hand side vector,  b 

Unit vectors,  U , e,, e„, ..., e 
0  1   2'      n+1 

e  = 0 
0 

the vector 1 . 

To retain the continuous-time aspects of the control problems, 

this algorithm requires explicit knowledge or availability of the matrix 
Ft 

e  ,  and its time derivatives. 

It is well known [4] that the components of this  (n X n) 

matrix can be expressed as polynomials of an order less than or equal to 
Ft n  with an exponential multiplying factor.  The knowledge of e   is 

required for determining the functions  /(t),  used in the parametric 

programming subproblem, and for determining the vectors  P,  given a 

control function u(t),  over an interval. 

We can express the fundamental matrix as 

m-1 
Ft 1\ 

k=0 

. (t) F 

where    m     is   the  degree  of   the  minimal   polynomial   of     F.      Note   that 

m < n,      if    F     is     (n x n).     The  algebraic equations  determining    (7 
K 

are 
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M a = 0(t)   , 

where   Ot   Is an m-vector and    0     is a vector with elements  of  the  form 
(.  skt 

t e       ,     k = 1,   . . . ,   0;   i = 0,   ...,   m    - 1,     where  the     s's      ./e  the 
K K 

eigenvalues of F and m  Is the multiplicity of the eigenvalue,  s . 

M can be shown to be nonsingular.  Thus 0C      is  composed of linear com- 

blnations of the elements of 0(t),  which are themselves members of 

the class of solutions to homogeneous, constant coefficient, linear dif- 

ferential equations.  Thus any vector 

7(t) 
, F(T-t) „ 

rt'e      G 

where  n  is a real vector and G is a real matrix, has components 

which are members of the class of solutions to the homogeneous, constant 

coefficient, linear differential equations. 

As will be proven in the next chapter, the functions generated 

for the linear loss case, minimum fuel problem, and minimum time problem 

are piecewise constant functions.  Also, for the quadratic loss in con- 

trol problem, the generated function u(t)  is shown to be expressed as 

a linear combination of the CC's     for a finite interval of  t.  Thus the 

components of the vector integral 

ft2     F(T-t) „ , N , 
/    e      0u(t) dt 

can be represented by a sum of iniegrals of the form, 

/ 

2    /' st , 
ate  dt 
s 

which  when   integrated,   is  equivalent   to 

, H  st 
t   e 

i      
s       s \: - r 2 /'      f-1     st    ^ 

a    -  t e       dt 
s  s (5.56) 

104 

■    ■     ■ --      ' .-■.-..-v.>-.-—^..^.r-^.^-«-_^.rJ.^.»>--j^^a»a 



MI n.ll.uHMIWHI.IIIIIIIillWIIIW'WH "HI"' """"JW^Ü'.VSIÜJ!  
■ '   ' " 

■wifnytJwff^^^vT^rn'ff'1^"*'"" '.t"lv"'^ 
...,„,,   ... i»..!    i  i ■!■ ii m»iji 

Ft 
It should be noted that all components of e  will be real, even for 

complex eigenvalues, since cancellations of the complex part occur. 
Ft 

Since the values of e   and its first n - 1  derivatives 

are needed at only a finite number of points (undetermined), these val- 

ues may be provided by an analog computer.  This suggests (but not re- 

strictively) the use of hybrid computers for the algorithm.  The analog 

computer could be used to supply values of /(t)  at specified Instants 

and to compute the vectors,  P[u(t)],  while a digital computer could 

be used to solve the linear and quadratic programming problems in the 

master and subproblems. 

To show that the algorithm is computationally feasib]e, we will 

show that each step or block in the flow chart is solvable by a finite 

number of iterations.  Although convergence of generalized programs may 

be an infinite process, a suboptimal solution as close as desired to the 

optimal solution is achievable in a finite number of iterations of the 

subproblem.  However, when the reachable set is a polyhedron, the gen- 

eralized program converges in a finite number of iterations of the sub- 

problem.  The number of these iterations is less than or equal to the 

number of extreme points of the polyhedron. 

To demonstrate the finiteness of the executions at each stage 

in the algorithm, we will show finiteness for each block of the flow 

chart for the basic algorithm (note that the block numbers designated 

coincide with those on the flow chart.)  It is also noted where an ana- 

log computer may be substituted when hybrid computations are desired. 

I 

Ft 
Block 1 ;  If die matrix  e   is not available as an input, its deter- 

mination may be obtained using an eigenvalue analysis of the matrix F; 

routines of this nature are available.  After the eigenvalue analysis, 
F(T-t) 

a set of linear equations must bo solved 1o find  e       in terms of 

a finite sum of multiples of F.  The analog computer may be utilized 
Ft 

for determination of e 

Block 2 : The extreme points of a simplex, in the reachable set surround- 

ing the desired point  S,  is a computation involving addition and sub- 

traction of the available vectors, some of which are unit vectors. 
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Block 5 : The solution to the phase I master problem at any k  for any 

right-hand side is a linear program that has an initial basic solution 

immediately available, i.e., 

^ = 0, Vi 

y+  = 0, y" = -S   ,     for  S < 0 
•'i     ' Jl    i  ' i 

y+ = S ,  y~ = 0  ,     for  S. > 0 . 
M     i   Ji i - 

The number of rows in this linear program is n + 1  for any stage  k, 

even though the number of columns is variable but always finite. 

Block 6 :  Additional columns are added to the master program of phase 

I until the value of w  is less than a required strictly positive num- 

ber.  Since the minimum value of w is zero and since w decreases 

monotonically and strictly decreases on a subsequence of iterations, for 

some specified positive number, the value of w will be smaller than 

this number after a finite number of iterations.  This is a basic result 

of generalized programming problems and shows only a finite number of col- 

umns are used for the master program. 

Block 7 : The calculation of the dual variable of the linear program in 

the master problem is a result of the solution procedure for the linear 

program and requires little or no additional computation. 

Block 8 : A vector addition provides the column vectors to be used in 

the master program after the phase I procedure is completed. 

Blocks 9 and 13 : The determination of the vector  P is achieved by 

intregation.  However, due to the structure of the integrand, special- 

ized (finite and exact) integration schemes are possible.  The integral 

is broken into a finite sum of definite integrals (corresponding to a 

finite number of switching points) whose end points are calculated by 

the analog computer or by formula substitution as suggested by Eq. (5.56). 
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Block  11 :    The  master  program  for  the   optimization   phase  is  a   linear 

program with  a  fixed number of rows  (at  most    n  +  3)     and a variable 

number of columns.     Although  the number  of columns  may  be  infinite,   for 

any practical  problem and within  limits  of  the  computer's accuracy,   no 

more   than  a   finite  number  of columns  are  generated   before  achieving  a 

solution,   indistinguishable   (within  computer  accuracy)   from   the  optimal 

solution.     The   simplex  method  should   be  used with   the   starting  solution 

to each  interation  being   the   final   solution  of  the   previous   iteration. 

The   first  vector   to  be  added   to  the   basis   is   the   vector   generated   from 

the   subproblem   (if optimal!ty has not   already  been  achieved). 

I 

Block  12 :    The   solution   of  the   parametric   programming  problem  is  dis- 

cussed  in Chapter   IV.     The   solution  has  a   finite  number  of executions; 

cycling  is  avoided  due   to   the   lexicographic  ordering  rules and  normal 

degeneracy  perturbation   techniques  available   for   linear  programming 

codes  and  complementary  pivot   theory methods. 

All   other  steps   are  either   logical   programming  steps  or  simple 

calculations.     Thus  since  each  step  requires  a   finite  number  of execu- 

tions,   each   iteration   of   the  master   problem and   its  corresponding  sub- 

problem   (of  phases   I   and   II)   require   a   finite  number  of  executions. 

The   solution  of   phase   I   is   finite   since   only  a   finite  number 

of  columns  must   be  generated   for  the     n  +   1     generalized   programs  used 

for   the  solution   to each   step of phase   I.      The  algorithm may  be  termi- 

nated  at   any  stage   In   phase   II   yielding  a   feasible   control  with  a   bound 

on  how much   its  objeptive   value  can  differ   from   the   optimal   objective 

value. 
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Chapter VI 

RELATION OF GENERALIZED  PROGRAMMING 
TO CONTROL  THEORY 

In   this  chapter,   the  relationship  between   the  necessary  conditions 

of the  generalized  programming  formulation  and  Pontryagin's  necessary 

conditions   for   the  optimal   control   problem  is   discussed.     The   character- 

istics  of  optimal  controls   for  the  various  classes  of control   problems 

are also  discussed. 

A.       Relation   to  Pontryagin's Necessary Conditions 

The   relationship  between   the  generalized   programming  optimality 

conditions  and   Pontryagin's  necessary  conditions   is  used  to  show  how  a 

solution   to  the  generalized  program  can   be  an   optimal  solution  to  the 

control   problem.      The   following class  of  problems   (discussed   in   the   pre- 

vious  chapter)   are  considered: 

x e  E u   t   E 

x  =  Fx  +  Gu 

-T 

\ 

x  +  g'u   +   f(u)\   dt :u)l 

where f( u)   =  ■   Y   | u.|    , 
) /l        i 

u'Qu 

and x(0) = 0 

x(T) = S 

u(t)   t   U  -   f ul Au   ,>  b] 

Vt   . 

If  we   let     x     =   f'x  +  g'u +   f(u),      then 

= Fx   +  Gu  +   J(u)   I' 
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By using  the  previously  presented notation,   the Hamiltonian  can be defined 

as 

H = fFx  + \|f'Gu  +  \|f'f(u)   U (6.1) 

x = H— ,        and (6.2) 

where    \|f(t)   = 

* = -Hx     ' 

.(t) 
^0 

"^(t) 

*(t) 

and \|/(t)   = 

\|f  (t) 
L     n 

(6.3) 

Pontryagin's maximum principle   states that   (6.2)   and   (6.3)   must hold 

while   the  optimum    u (t)     satisfies 

_    _      * sup 
HU,   x,   u  )   =  u(t)   e   u  H(t,   x,   u)   , (6.4) 

for a  given     \}f,   x,     or 

H(\l/,   x,   u  )   >  H(\|f,   x,   u)      , all     u(t)   t   U (6.5) 

Let   the   optimal  dual   solution   to  the  generalized   program, 

max A 
P t  C 

be 

subject   to U A  +   PL;   =  S 

P £  C   , 

'    = (V "i  Vi5 

and  let 
-    , -*'     F(T-t) 
t(t)   =   -7T       e (6.6) 
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where  n  = (IT , ,.., it ).  Thus it is obvious that \|f(t), as defined, 

provides a solution to (6.3).  To show that this solution is non-trivial, 

it is sufficient to show that  ^n(t) ^ 0.  From the results obtained in 
F(T—t) 

Chapter V, the first column of e      is the unit vector U .  Thus. 
0 

\|r (t)   = -it     , for all     t  . (6.7) 

We  also  know,    from generalized   programming,   that 

n u0 = 1  , 

therefore,  it* = 1 and \1/ (t) = -1,  for all t, 
0 Y0 

—* 
Since n       is the dual solution to the generalized program, it 

satisfies 

min    -•*' P _*' P 
T;      r t < it 
P e C 

1 1 
P e C , 

or, equivalently, 

min  —*' 
u(t) G U n 

P(u) 

1 
<  n 

P(u) 

1  J 

Vu(t) t U . (6.8) 

The above inequality is equivalent to the subproblem of the generalized 
_* 

program, when  IT  is the current dual variable.  Equation (6.8) may be 

restated as 

*     * ~*'  F(T_t)   * 
it0  f(u ) + IT  e V   ; Gu (t) 

*       ~*' F(T-t) — 
< n f(.u)  +  IT e    '  Quit) 

for all  u(t) e U,    and 

t e [O.T] , 
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or 

*  *        ~*'     F(T-t) - * 
-n f(u ) - rt  e U  ; Gu (t) 

> -Jt0f(u) 
*i  F(T-t) - „ s 
^  e      Gu(t) . 

By expressing the above in terms of ^jFCt)  and by using Eqs. (6,6) and 

(6.7), the inequality is equivalent to (6.5) or Pontryagin's maximum 

principle.  Thus the generalized programming necessary conditions are 

equivalent to Pontryagin's necessary conditions for the same problem. 

To complete the analogy between Pontryagin's necessary conditions 

and the generalized programming optimality conditions for control prob- 

lems, we include here a discussion of f"? transversality conditions for 

sets S     which are convex smooth manifolds. 

Notice that the vector it  is equivalent to the vector \|r(T). 

Also an optimality condition for free (initial) final point problems 

[as shown in Eq. (5,47)] is 

rt > 0 , for all S e   S 

We also note that some S t «4 has the property 

n+2 ' 

since there must be some vector S   in the basis of the expanded master 

linear program. 

These conditions represent a halfspace with the hyperplane defining 
_*■ 

it as being represented by the vector  TT . This hyperplane is a sup- 
* *•' *    * 

po rting hyperplane to ^  at some  S ,  since  rr S 'n+2 ; S     lies 

completely in one halfspace of the hyperplane.  The hyperplane is also 

a tangent plane to the manifold S     (when S    is  a  manifold).  These 
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conditions represent the fact that  ^(t) = -n  is orthogonal to the 

tangent hyperplane of ii  at  S .  This is precisely the transversality 

condition described in Chapter II. 

To show that a solution to the generalized programming problem is 

also a solution to the continuous-time optimal control problom (for 

fixed end points), it is assumed that we have a finite set ol vectors 

P ,  so that 

P1 

= 0 and 

> 0,   all  p e C 

Also 

1^ = 
V,:,  = 1 
^    1 

1    — 
(6,9) 

has a solution '       |; 

Tlieorem 6.1.      The   solution 

* \ '    i 
u   (l)   = \ u   (t )    n. 

t   t   [0,Tl 

is an optimal solution for the control problem. 
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Proof  of  Theorem 6.1 

We  know 

-.   , -*'      F(T-t) 
\|/(t)   = -rt      e 

satisfies   (6.3)   and    t0(t)   =  -1     satisfies    ^(t)  < 0,      t  e   [0(T] 

f(u )   +  n       Rrvi   w   Gu   (t)   =  f ST    * i 
Z Miu (t) 

-*'      F(T-t)  - 
+  TT       e G s * 1 

^u   (t) 

and,    from convexity, 

f(u )  < f V"    *  i      1 K^   *       i 
2 Mi" (t) < 2^if(u) ■ 

Since  5 =0,  from generalized programming necessary conditions, 

0 = f(u ) + rt  e   K Gu (t) + it , 
n+1 

<  \ M,f(u ) +  ) n.TT 
-*'      F(T-t) - 1, s    c- #  * 

e      Gu (t) + \ M, IT 
Z i n+1 

> u. T 

P1 

= 0 

Since  it  ,   is constant and since 
n+1 

IT 

P 

1 J 

> 0 ,    VP e C , 

114 

d^mmniSitMiitimtmimMmiiimSkmtiimktm ■i'iM»M«iiiii»iiirii«iiMr<>Miin>mi«ifMiitimiM«Sr^ -martMtima,-'**'"-—--^"---^-*-      ^ 



III.        i     ii ■iiiiiiiinuiyi.iii  i     ii .1    BBHHP   '  '     '      '" '"   ■'■'■'""■'—' V   i ■.niJIMIWiJlllUllliUUIHllilHHOi.Wllipi 

f(u  )   +   TT      e   K       '   Gu   (t)   <  f(u)   +  Tt       e   v Gu(t), 

Vu(t)   e   U   , 

or 

* ~*1     FfT-t)   -  * ~*     F(T-t)   — 
f(u  )   -  rr       e   V       ;   Gu   (t)   >  -f(u)   -  it     e   V Gu(t) , 

u(t)   e   U  , 

t   €   [O.T]   , 

which is equivalent to the maximum principle.  Thus Pontryagin's neces- 

sary conditions for optimality are satisfied by the solution to the gen- 

eralized programming problem.  Since the set of equations (6.9) has a 

solution, the control  u (t)  is a feasible control.  It remains to be 

shown that 

J(u ) < J(u) ,    Vu(t) e U 

which was shown to be a result of 6=0, in Theorem 5.6. Thus the 

control u (t) is an optimal control for the continuous-time control 

problem. 

Q.E.D. 

_-x- 
We  will   now   show   that  given     n   I     an  optimal   dual solution, a   finite 

set  of  vectors     P      can   be   found   to   provide  a   feasible   solution   to   the 

set  of  equations   (6.9).     This   is   done   for   three  cases,    the  quadratic 

loss   in   control  with  positive   definite  matrix     Q,      the   linear  cases 

satisfying   Pontryagin's  general   position   condition,   and   finally,    the 

linear   cases  not   satisfying  Pontryagin's  general   position   condition. 

Theorem 6.2.      If   the  quadratic   loss  control   problem with   positive   def- 

inite     Q     has  a   feasible   solution,    then     u   (t),   which   provides  a 

solution   to 

115 

■i-rriiMniir i nn rrmltoiii  ifntiWiimrmilii* rrniit r-■" HUM •—-——--'-—^■^-•-"■^•«"'"tliitllHIIIItllillMlito 



B^mn^w. miiiiiii>iii<'»»i>»wmiiwi^^^wpM^ww^» 

It 

p 

1 
= 0 

is  an optimal  control   for  the  control  problem. 

Proof of Theorem 6.2. 
* 

Let    u  (t)     be  a control   satisfying 

= 0  , 

then    u  (t)     solves 

*• 
min  u(t) '   Qu(t)   +  /   (t) '   u(t) 

u(t)   e  U  , t   e   [0,T]   , 

* _* 
where    7   (t)     is generated by    n  .     The quadratic  program with    Q    posi- 

tive  definite has  a  unique solution  at  each     t.     Thus   there   is no  other 

u(t)   satisfying 

P(u) 

1 
=  0 

By the feasibility assumption and by U being a compact set, an optimal 

control exists and must satisfy the necessary conditions.  Since u (t) 

is the only control satisfying the necessary conditions for optimality, 

it must be the optimal control. 

Q.E.D. 

Theorem 6.3.  For feasible linear control problems (including minimum 

fuel and minimum time) where  F,  G,  and  U  satisfy the general 

oosition condition of Pontryagin, the control  u (t) satisfying 
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—■*■< 
p 

1 
= 0 

is an optimal  control. 

Proof  of Theorem 6.3. 

Since  a   feasible  control  exists  and since    U     is  compact,   an optl- 

mal  control    u    (t)     must  exis^  and  satisfy the  necessary conditions  for 

optimality.     From  the  results  of  Pontryagin,   when  the general  position 

condition holds, 

mm 
u(t)   e 

n 
1   J 

(6.10) 

has a unique solution  [of u(t)],  except on a set of measure zero» 

which  we call u (t).  Thus  u (t)  is the only function satisfying the 

necessary conditions, and 

u (t) = u  (t) 

Q.E.D. 

When   the  general   position  condition   is  rot   satisfied   by     F,     G, 

and     U,      the   solution   to   (6.10)      is  not   necessarily  unique  over a   set 

of   positive  measure.      However,   since     (6.10)   must   be   satisfied   (be- 

cause   it   is  a  necessary condition),   only  its   solutions  need   be   investi- 

gated   to  produce   the  optimal   control.     This   is   true,    since   the  problem 

is   feasible,      U     is  compact,   and   an  optimal  control   exists.      By  the 

theory  of  generalized  programming,   any  solution   to   (6.10)   which  is   fea- 

sible   for   (6.9)   is  an  optimal   solution,   as   shown   by  Theorem 6.1. 

Proposition  6.1.     There  are   a   finite  number  of  distinct   solutions   to 

(6.10). 
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Proof ol  Proposition 6.1. 

It has been shown in Chapter  IV that an  upper bound exists on the 

number of possible   switching points of any solution  to the parametric 

programming problem  (6.10),   for any value of     n    for a  finite  interval 

of     t.     These  points   are   fixed   (given    "rf ) ,      and  any   solution  to   (6.10) 

remains constanv  between any neighboring pair  of switching points,     There 

are  a  finite number  of possible  solutions  for   (6.10),   between  such 

switching points   (due   to a   finite number of  bases).     Thus  there are  a 

finite number of distinct   solutions  to  (6.10). 

Q.E.D. 

Proposition 6.2.  The set of points P,  generated by (6.10), are extreme 

points of a convex (bounded) polyhedron of all  P satisfying 

TT = 0 (6.11) 

Proof of Proposition 6.2. 

By the minimization procedure of (6,10), extreme points are gen- 

erated.  Also by the homogeneity of (6.11), any convex combination of 

the finite number of extreme points satisfy (6,10).  Thus the points 

generated by (6.10) are extreme points of the convex polyhedral set 

containing the solutions to (6.11). 

Q.E.D. 

Theorem 6.4,  For linear loss problems not satisfying the general posi- 

tion condition, a finite set of vectors  P  can be found to pro- 

vide an optimal solution to the generalized programming problem. 

Proof of Theorem 6.4. 

The optimal solution satisfies 

it 

P 

1 
=  0   , 
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hence we  have   shown   that   a   finite  number  of  vectors     P    form  the  extreme 

points of all  vectors  satisfying  the Eq.   (6.11).     Since an  optimal   solu- 

tion exists,   it must   satisfy  (6.10),   and  therefore,   it must  be a  convex 

combination of all  extreme  points  to  the  set   of vectors  satisfying   (6.11). 

It  can be shown   that   an optimal  control  vector     P      must  be a  combination 

of at most    n +  1       extreme vectors    P      satisfying   (6.10).     Thus,   the 

finite set of extreme  vectors satisfying   (6,10)   can  be generated and  must 

include,   in  its  convex  hull,   a   feasible  solution   to   (6.9).     Therefore, 

the  optimal   solution   is   determined  by  a   finite   set   of vectors     P  . 

Q.E.D, 

Let p.     be   the   solution  to 

V * "i"1 + ■ • ■ + >Cpk = 5 

v „: = 
1=1 

(6.12) 

—i 
where   the     P'     are   the   extreme  vectors  of   (6.10)   or   (6.11).      Such  a 

solution  exists   from  Theorem 6.4. 

Theorem 6.5. U    (t)    =    \      v,u CD      , 
1=1 

where     u   (t)     generates     P  ,      is  an  optimal   solution   to   the 

control   problem. 

Proof  of Theorem 6.5. 

u (t) provides a feasible solution by virtue of (6.12) and satis- 

fies the necessary conditions by construction; by Theorem 6.1, the cost 

function   is  minimal   over  all   feasible  controls. 

Q.E. D. 
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B.   Characteristics of Linear Loss Optimal Controls 

Without assuming a general position condition, we will show that an 

optimal solution to the control variable for line r loss functionals, 

including minimal fuel and minimum time problems  is a piecewise con- 

stant function with a finite number of points o  discontinuity for any 

finite interval of time.  Thus, since we are considering finite horizon 

problems  (T < oo),  an optimal control is a piecewise constant vector 

function with a finite number of switching points. 

The solution to the parametric linear program is observed as being 

a vector control function that is piecewise constant and has a finite 

number of switching points.  Thus any vector  P ,  generated by the 

subproblem, has the same property for its generating control function. 

Since generalized programming problems are linear programs in the master 

problem, and since the number of rows in the linear program is less than 

or equal to  (n + 3),  the number of columns  P  in any solution is at 

most  (n + 1)  for phases  I  and II of the algorithm. 

Proposition 6.3.  The columns  P ,  generated for the optimization phase 

of the algorithm by the phase I procedure, are generated by control 

vectors that are piecewise constant with a finite number of dis- 

continuities. 

Proof of Proposition 6.3. 

In general, the  n + 1  columns  P ,  for  1 =0, 1, ..., n  gen- 

erated for an initial feasible solution to the control problem, are gen- 

erated from t lie phase I algorithm for  n + 1  right-hand sides.  Thus 

each  P  is generated by a set of at most  n + 1  vectors  P,  and 

each in turn is generated by a piecewise constant control function with 

a finite number of switchings.  If the maximum number of switchings for 

any control function generated by the subproblem is M (M < oo) ,  each 

P  has a control with at most  (n + 1)M  switchings, since these 

controls are generated by summing n + 1  control functions with at 

most M switchings each. 
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Each  new  column   (after   feasibility  is  attained)   is generated  by a 

piocewise  constant   control  with   at  most     M     switchings.     Thus  each 

column     P  ,      in   the  master  problem of  phase   II,   has at  most     (n  +  DM 

switchings   in   control. 

Q.E.D. 

Proposition 6.4.     At   any  stage   in  the   iterative   process  of  the   generalized 

program,    the  current  control   solution   is  a   piecewise  constant   func- 

tion with  a   finite number of discontinuities and has an objective 

value within   the   bound  of   the  optimal   objective  value,   given   in 

Eq.   (5.53),   of     ük. 

Proof of  Proposition  6.4. 

The solution to the master problem contains a nonnegative combina- 

tion of at most n + 1 columns P , each generated by a control func- 

tion that is piecewise constant, and each lias at most (n+l)M switch- 

ing points   (Proposition  6.3).     Thus,   the   combination of   the  controls   to 
2 

generate  the   solution  has  at  most     (n  +   1)   M     discontinuities.     The 

bound     (o   )     was   shown   in  Chapter  V. 

Q.E, D. 

Theorem 6.6.     The  optimal   control  generated   by   the generalized   program- 

ming  solution  of   the  continuous-lime   problem  for  the   linear   loss 

functionals   (minimum  fuel   and  minimal   time   problems   included   as 

special   cases)   is   a  piecewise  constant   function,   and   it   has   a 

finite  number  of  discontinuities. 

Proof of Theorem 6.6. 
1{ 

If  the  generalized  program  terminates with a  value  of     6    =0     for 

some  stage     k,      then   by  Proposition  6.4,    the   theorem   is   true. 

In  any  case,   given   the  optimal   dual   variables   to  the  generalized 

program     n  ,    the   optimal   solution   is  a   combination  of at   most     n   +   1 

vectors     P  ,      generated  as  solutions   to   (6.10).     The generating  con- 

trols of  these  vectors  have  at  most     M     switchings,   and   their  combina- 

tions  lias  most      (n  +1 )M     switchings. 

Q.E.D. 
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k —k 
It should be noted that when  6=0,  the current value of TT  is 

optimal, and it can be used to determine an optimal control function in- 

dependent of the current solution (but not necessarily distinct). 

Theorem 6.7.  If the solution to the parametric linear programming prob- 

lern when using it  to generate /(t)  is unique except on a set of 

measure zero, the optimal control function, when non-zero, is at an 

extreme point of the admissible control region. 

Proof of Theorem 6.7. 

The solution to a linear program always occurs at an extreme point 

of the constraint set.  When a change of variables is made to produce an 

equivalent problem for minimum fuel problems, a control of level zero is 

considered to be at an extreme point of the new constraint set.  Thus, 

the optimal control is at an extreme point of the admissible control 

region (or an equivalent constraint set for minimum fuel or minimum time 

problems). 

Q.E.D. 

The previous theorem also Implies that the standard minimal time 

problem, and certain linear loss problems, have bang-bang solutions.  It 

also implies that the minimal fuel solution is a bang-coast-bang solu- 

tion in some cases. 

Pontryagin [ll has shown that his general position condition is a 

sufficient condition to insure that the parametric linear programming 

problem hns a unique solution almost everywhere. 

Proposition 6.5.  The upper bound on the number of swl tellings for the 

linear loss functionals when the matrix F has real eigenvalues, 

the state of the system is  n,  and the matrix A of the admissible 

i-ontrol region is m X p,  is 

2 /P\ 
(n   +   1)      (p   -  m) 
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IVouf   of   Proposition 6.5. 

Tli ero are at most (  1 bases for the parametric linear program. 

Each has  (p - m)  nonbasic variables with relative cost factors  ^.(t) 

having at most  (n + 1)  points at which it becomes value zero.  Thus 

if a basis can be repeated, it can do so no more than  (n +1) (p - m) 

times, after which it remains optimal.  Thus each column P  of the 

master program is generated by a control with at most 

(n + 1)(p - m) 

switching points.  Since at most  (n + 1)  control functions are com- 

bined, the maximum number of switchings is 

(n + 1)  (p - m) 

Q.E.D. 

C.        Characteristics  of Quadratic  Loss Optimal Controls 

Since   the   parametric  quadratic   program has  a  time   (parameter)   de- 

pendent   solution   for   the control   vector,    the  only characterization  of 

the  optimal   control  generated   is  in   the  class  of   time   functions  possible 

for   the   solution. 

For   the  quadratic   programming   problem,   stated  as 

w  =  Mz  +  q(t)    ,      w, z >  0,     w  z     =  0   , 
— 1   i 

the solution has the form 

where 

. z . 

= q(t) + M 

= q(t),  and    z, w = 0 
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q (t)  is merely a linear combination of the original components of q(t) 

which are again linear combinations of the components 

.£      k 
t e 

for all    s      eigenvalues of    F,     and    £    loss  than the multiplicity 
K 

of the eigenvalue s . Thus the solution to the parametric quadratic 

program is composed of linear combinations of the same elements. 

As in the linear case, at most (n + 1) columns of the generalized 

programming master problem are used at any stage; therefore, the current 

solution is of the same form, i.e., linear combinations of the elements 

.£      k 
t e 

Whenever a basis switch is made,   the linear multipliers change in the 

linear combination,   but the  solution has the same characteristic form. 

Proposition 6.6. At any stage in the quadratic control problem, includ- 

ing the optimal solution, the form of each component of the control 

function is a linear combination of    n + 1    terms of the form 

^e.    k t    e , 

with only the constant  terms changing at each of  the  finite number 

of basis switches . 

: 

Proof of Proposition 6.'o. 

Each column generated by the  subproblem has a control  function of 

the  required form with   the   finite number of basis  switches,   since  the 

control  function is generated  from the parametric quadratic program. 

Since  at most    (n + 1)     columns are combined  for each solution,   the 

current control solution has  the same form.     At the optimum,   the quad- 

ratic  program has a  unique  solution  for positive definite    Q,   and only 

one  column is generated with  the generating control,   which is optimal, 

having  the required  form.     For  positive  semidefinite    Q,     the  solution 
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to the quadratic program is not necessarily unique, and a combination 

of at most (n + 1)  control functions may be required as in the linear 

case. 

Q.E.D. 

This algorithm provides an open loop solution to the optimal control 

problem.  Also, it should be noted that no assertion is made regarding 

the uniqueness of the solution in the form of the optimal control 

function. 

Since Chapter VII provides an illustrative example with computational 

experience in the linear case, we will now present an example showing the 

form of the solution for the case of quadratic loss in control [14], 

Consider the system 

Xi ■' X2 

x2 =u . 

Thus, 

F = 
0  1 

0  0 
G = 

0 

1 

xi(0) = 0, x2(0) = 0 

X1(T) = s1 ,    and x2(T) = s2 

min 
u(.) 

dt 

u| < 1 , 

where Q = — I and is positive definite.  If the optimum dual variable 

to the generalized programming formulation of this problem is 

f   = (-1. ^. *$.   *3*) > 
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the optimal solution can be obtained as follows: 

find the control  u (t)  so that 

min -*'   |   P | |u(t)|  <!    rt      [J is achieved by    u (t) 

Therefore,     u (t)     must solve 

min      (l2 *    „ 
u(.)    J2U    +  (7tl'   * 

*       FCT-t) I * 
2)  eF(Tt)  Gu(t)     +.3 

|u(t)|   £1,     t e  [0,T]   ,   or 

min 
u(.) 

i u2 +    \lf*(t),   t*(t)     Gu(t)( 

|u(t)|   < 1  , 

where    ^(t),     and    to^*^     are tlie opti1"31 adjoint  variables for all    t. 

Hence  the minimization is 

min     (l2       ,*    v,     ) 
u(0       2U    +^t)'   U\ 

\ 
u(t)l   < 1. 

For this problem, the solution is easily seen as 

* 
u (t) = -sat \|f„(t) 

-t2(t),       U2(t)| < 1 

•if- •0' 
-sgn \|f2(t), |t (t)| > 1 
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Note that ^„(t) has the form 
dt 

(V V 
T-t 

1 
= Jt*(T-t) + rt* i.e. , 

t2(t) = at + ß 

Thus the optimal solution has the form u(t) = at + ß,  for any interval 

where a a^d ß are allowed to change at certain switching points. 

Free Final State Problem.  In conclusion we will consider the 

problem where the initial state is zero and the final state (at fixed 

time,  T)  is completely free.  Since the first through n * rows of the 

generalized programming master problem have free right-hand sides, the 

slack variables for these rows are always permitted to be non-zero. 
_# 

Thus, the optimal  it  must be 

* = (1,  0 Tt    ) 
n+1 

The optimal control is then determined by the subproblem, 

mm 
U(') 

f[x(u), u] 

subject  to        u(t)   e  U t  e   [O.T]   . 

Thus  the problem is  solved  by one  iteration of a  parametric programming 

problem. 
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Chapter VII 

EXAMPLES AND COMPUTATIONS 

In this chapter, examples are use<| to show the execution and sample 

results of the algorithm. The convergence properties will be demon- 

strated as well as the basic features of the algorithm. 

The problem we intend to solve is 

min f    i 
u(.)j0 1" (t)| dt 

Xi =X2 

x2 = u 

|u(t)| < | 

x(0) = J '   X(3)-[0o]- 
Thus 

F = 

Ft 
,    and 

.0  1 J 

F(T-t) n e      G = 
1  T-t "I  (" 0 ' 

0   1  J  L 1 . 

T-t 

L 1 

Therefore, 

P = r ['";]• (t) dt ; 
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and 

U = |u||u|  < l| . 

By the definitions given in Chapter V, 

*l- 

S_ = 

S = 

FT 

[:)!■ 
1 3 " ' l" 

1 

, _ 
i' 

0 1 . L o. L o J 

(s) = |sT - s: [: 
We initiate by looking for a feasible solution to 

min      V  +  V  - 
„y w = Z yi + Z yi 

i 

i=l     i=l 

subject to   Pp + ly - ly 
-1 

0 

= 1 , where 

P e C = KJT. 
T-t 

1 
u(t) dt, 

|u(t)| < 1 

"[I]' Let P" = | Z I »  generated by the admissible control u(t) = 0.  In 

thiB example, we seek to solve phase I by keeping the desired point as 

the right-hand side and to terminate when w = 0. 
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T 
The first master problem is represented by the  tableau 

2      2 
mi 

M 

in    Y  +   V  " 
,yW= Z yi+ Z yi 

1=1 1=1 

.,•. 

0 

0 

1 

0 

1 

0 

'1 

-1 

0 

0 

J2 

0 

-1 

0 

-1 

0 

1 

M0. y^ yi > o 

I 
I 
1 

The first two rows correspond to states in the dynamic system, and the 

final row represents the possibilities of convex combinations of the 

columns P ,  generated by the subproblem.  The optimal basis for this 

linear program is 

with 

Bo = 

0  0-1 

0  10 

L 1  0   0 

0  0  1 

0  10 

L -i o  o 

The solution is 

with 

i, y^ = i, y^ = y+
2 = y~2 = o 

w0 = i 
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The dual variable is 

Tf0,= /gB"1 = (0,   1,   1)  B"1 = (-1,   1,   0)   , 

[n'  = C^,   jtg,  rt3)] 

The subproblem for the first interatlon is 

min 
P e C 

P 

1 

(The minus sign results from the manner in which it is generated from 

7 .)  The subproblem is then expanded to 

u(«\ . jf'-v-v [V]u 
(t)   dt   - it 

or 

mln 
u(-)   ^V3 " t)   ~n21   u(t)' 

|u(t)|  < 1  , t e  [0,3]   , 

for    TX1 = -1,   rt2=l 

The minimum is achieved by the  function 

u  (t)   = -1 t e  [0,2] 

u  (t)   = 1 t  £  (2,3] 
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i 
f ^ 

I    I 

1.1 

I 
I 
! 

I 
I 

I 

I 

which generates a vector    P , 

3-t 

1 
u(t)   dt 

-3.5 

-1.0 

The new master problem tableau has an additional coluran correspond- 

ing to P ,  i.e., 

min 

i    i 
= ^M 

^o 

0 

0 

1 

-3.5    1 

-1.0    0 

1     0 

0 -1 0 = -1 

1 0 -1 = 0 

0 0 0 = 1 

Mi- 
+ 

yi' yi 
> 0  . 

The optimal basis for this linear program is 

Bl = 

-3.5 

-1 

1 

0   0 

0 1 

1 0 

and the solution is 

^i = 5/7,  p = 2/7,  y = 2/7,  all others equal zero, 

w = 2/7 
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Using the dual variable from the above basis, the new column generated by 

both the subproblem and the generating control is 

4.5 

3 
,  u (t) = 1,  t e [0,3] 

The new tableau is 

min 
=   lyl+l   h 

H0 

0 

0 

1 

^1 

-3.5 

-1 

1 

^2 

4.5 

3 

1 

1 

0 

0 

'2 

0 

1 

0 

'i 

-1 

0 

0 

J2 

0 

-1 

0 

-1 

0 

1 

V ^V yi^0 

The optimal basis for this linear program is 

0 -3.5 4.5 

0 -1 3 

1 1 1 

and the solution is 

H0 = 1/3,  ni = 1/2, n2 = 1/6 

with 

w = 0 . 

Thus, a feasible control has been found for the control problem, 
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To demonstrate the above fact, let 

f       0        1       2 
u (t) = |i u (t) + |i u (t) + p u (t) ,    or 

uf(t) 

1 
3 

2 
3 

t = [0,2] 

t = (2,3] 

and let 

Pf = P[uf(t)] 
3-t 

uf(t)   dt = 
r -i I 

1 _ 0 

Thus u (t)  is a feasible control, i.e., an admissible control bringing 

the system from its initial state to the desired final state.  Note that 

JCu (t)] = /   lu 
Jo 

it)I dt = 4/3 

Since a   feasible solution  is  available consisting of a  positive 

combination of    (n + 1)     vectors     P,     the optimization phase may be 

initiated . 

Let 

P1  = 

J[u   (t)] 

therefore 

0       ^ 1       o 2 
po       '    po        '    and   P0 = 3 

The  initial master problem is     (k =  2), 
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or in tableau form, 

max 

max A 

V +1 ?\ =i 
i=0 

^=1 

^i > 0 . 

1 

0 

0 

0 

^0 

0 

0 

0 

1 

Kl 

3 

-3.5 

-1 

1 

K2 

3 

4.5 

3 

1 

0 

-1 

0 

1 

n. > 0 
i - 

The solution to this linear program is 

with 

Mo = 1/3,  ii1 = 1/2,  H2 = 1/6 , 

Ak = 2 

-k 
If we define u  as the control 

-k   V  k i... 
u = > n.u (t) 

i=0 
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k th 
where [i.     is the solution to the k   master program, the inequalities 

in Theorem 5.6 become 

J(u#) < J(uk) < -Ak = Jk 

For    k  = 2  the  solution is 

J(uk)   = 4/3   , -Ak = 2   . 

~2 The dual  variable    jt       is 

n2'  =   (1,   2,   -4,   0)   , 

and  the  subproblem is 

..    .     .k       k+1       k+1 
find    b  ,   u       ,   P       , so  that 

k -k' 
0    =    min     rt 

P   e  C 

P 

1 
or 

min f       k   .    ... /k       k\ 
u(t)   .   U    J0     

n0   iu(t)l   +   (V   n2J 
3-t 

u(t)   dt  +  n. 

This   is  equivalent  to  finding  the   solution  to 

mm 
u(-) [nk(3-t)   + nkj  u(t) u(t)|   +     ji   (3-t)   + 

u(t)I   <   1 

t   t   [0,3] 

For    k  = ?,     the solution is 
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-1    t e [0, 1/2] 

u"(t) = ( 0    t e (1/2, 3/2] 

1    t e (3/2, 3] 

This solution produces a new vector 

P3 = 

2.0 

-0.25 

1.0 

with 

Jc  -k' 
o = n = -2.5 

Thus,   by using the  inequalities  in Theorem 5.6,   we arrive at 

J(uk)   + 5k < J(u*) < J(uk)  <  Jk  ; 

for    k = 2,     the solution  is 

-1 .17 < J(u  ) < 1.33   . 

After each column is generated, the master problem is augmented (all P 

are retained). 

We will now present the results from a computer run solving the 

above problem.  The program converged in 40 iterations, using 16 place ac- 

curacy, on an IBM 360/67. Figure 1 illustrates the control function u (t) 

at iterations corresponding to k = 2, 3, 4, 5, 10, 15, 30, 40.  Its cost 
_k _k 

J(u )  is shown at each iteration in Fig. 2.  The optimal value J(u ) 

at each iteration is shown in Fig. 3, and the distance between the two 
k k 

curves represents the magnitude of o . The con\ e'-gen>-e of n    and b 
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1^ 
is  shown in Table 1.     In  this problem,     5      converged monotonically to 

zero.    T^e convergence of    n,     on the other hand,   is  not monotonic by 

component or component-wise norm.    However,   it does  converge on a  sub- 

sequence to its optimum value and  seems to monotonically converge  in the 

n*|. norm of  it 

A common penomenon in these problems was observed from the gener- 

ated columns and their corresponding control functions.  After the ini- 

tial iterations, the new columns seemed to be approaching a limit and 

were very nearly equal component wise. This is due to the uniqueness of 

the solution to the subproblem at (or near) the optimum dual variables. 

(Note that the subproblem has a unique solution for every stage of this 

problem.)  Thus the control functions are converging (as seen by Fig. 1) 

to their optimum value, and the state generatea by these controls is 

converging to its optimum desired value. 

This similarity in the generated columns produces an unusual prob- 

lem in the master program.  The master program develops into a linear 

program with approximately equal columns being basic or "nearly" basic 

columns.  Thus the basis matrix is getting closer to a singular matrix. 

For computational purposes, this activity is not very critical, since 

it only occurs when optimality is close at hand, e .id termination occurs 

before the basis matrix becomes singular. 

The final solution computed for the example consists of a control 

-1.000 t t [0, 0.38196564] 

-0.1176 t t (0.38196564, 0.38196754] 

-0.0784 t t (0.38196754, 0,38196945] 

u"(t) =^ 0.0 t t (0.38196945, 2.61802864] 

0.0392 t t (2.61802864, 2.61803246] 

0.1176 t t (2.61803246, 2.61803436] 

1 .00 t t (2.61803435, 3 .0] 

with  a   cost    J(u   )   =  0.7639320.     If  accuracy   to within  five  places  is 

sufficient,   then 
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U(t) 

I 

2/5 

0.0 

-1/5 

-I 

 1 i 1 • 
 I 

k"2 

u(t) 

I.U 

0.0 1 
1 2                       3 

_i n k'3 

u(t) 

1.0 

0.0 

-1.0 

i    r- 
i 

i 
i 

2               : s 

1 
J 

k-4 

u(t) 

1.0 

0.0 

-1.0 
k»5 

a.     k  =  2,   3,   4,   5 

Fig. 1. ü(t) vs t AT ITERATIONS CORRESPONDING 
TO k = 2, 3, 4, 5, 10, 15, 30, 40. 
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1.0 

u{t)    00 

■1.0 

1 1 r 
r 

1 

/  

2 3 

k=IO 

u(t)     o.O 

u(t)    00 

b.     k  =  10,   15,   30,   40 

Fig.   1 .     CONTINUED. 
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}   ,■ ■ 

■ 

!t 
p 

1.5 

1.0 

0.5 

I    I    I 
2   3  4  5 10 20 30 

Fig,   2, J(u  )     vs    k, 

Table 1 

CONVERGENCE OF DUAL VARIABLES 

k 
"l n2 "3 

5k 

2 2.0 -4.0 0 -2.5 

3 1.33 -1.67 0 -0.83 

4 1.0 -1.75 0 -0.31 

5 0.89 -1.22 0 -0.14 

10 0.89 -1.36 0.1^ -0.004 

15 0.89 -1.34 0.128 -0,0001 

20 0.895 -1.34 0.131 -0.000004 

25 0.894 -1.34 0.130 -0.00000013 

30 0.894 -1.34 0.130 0 

35 0.8944 -1.3417 0.1305 0 

40 0.8944 -1.3416 0.1305 0 
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Fig,   3.     J(uk)     AND    J(uk)   +  ök    VS    k 

u*(t) 

^1.0       t   t   [0,     0,38197] 

0 t   t   (0.38197,     2.61803] 

1.0       t   t   (2.61803,     3.0] 

I.Si- 

J(uK) 

j(Ük)+ 8k 

-0.5-f 

-,.oL 

-I.51- 

10 15 20 

k 

30 

with    J = 0.7639 . 

To compare  this method with other  solution procedures  for  the mini- 

mum fuel problem,  we observed  the  final  control  function produces a  fea- 

sible  control  which,   in  turn,   produces   an objective  value  accurate   to 

15 digits   (double  precision  accuracy) . 
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Although linear programming can be used in the discrete version of 

the continuous problem, to achieve a solution as good as that obtained 

by the generalized programming method, the time interval would have to 

be broken into more than one million increments; these increments can 

produce a linear program with over a million variables and over a mil- 

lion rows. Naturally, linear programs of that size are too large for 

existing computers. 

By using the generalized programming method, only linear programs 

with rows approximately equal to the dimension of the state space need 

to be solved. 

The concluding example illustrates the determination of the exis- 

tence of a feasible solution to the control problem to solve a minimum 

time nr ob lern. 

Let 

x(0) = 

0 1 

.0 0 

1" 1 

0 
1     * x(T) = 

G = 

0 

0 

min  f 

"^ Jo 
dt with !u(t)l < 1 ,  Vt . 

The solution to this problem is known to be T = 2.0  [15] .  The solu- 

tion procedure used is to choose some very large T and solve the gen- 

eralized program 

min 
lyl+    Iyi 

Pia + ly. - ly. = S 

= 1 ,    where 
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S  = -e 
FT 

FT 
1       T 

0       1. 

and 

and 

P     is defined  as previously.     If  the probi im is feasible,   reduce    T;   if 

not,   increase    T    and continue. 

The  following table  illustrates  the number of   iterations  required 

to determine a feasible solution,   if  it exists,   or  the infeasibility of 

the  original problem,   for  any    T.     Note that  from Theorem  5.2 when 
k k 

w    + 5    > 0,     no feasible  solution exists for the current    T. 

me,  T 
of 

Number 
Iterati ons 

w 6 

5 2 0 0 

2.05 2 0 0 

2 2 0 0 

1.95 2 0.05 -0.025 

1 2 0.75 -0.25 

Thus, for times when T< 2.0, a feasible solution can be found after 

two iterations; and, for times when T < 2.0, the determination of an 

infeasible problem can also  be discovered after two   iterations. 
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